347 research outputs found

    Chronic Exposure to Low Frequency Noise at Moderate Levels Causes Impaired Balance in Mice

    Get PDF
    We are routinely exposed to low frequency noise (LFN; below 0.5 kHz) at moderate levels of 60–70 dB sound pressure level (SPL) generated from various sources in occupational and daily environments. LFN has been reported to affect balance in humans. However, there is limited information about the influence of chronic exposure to LFN at moderate levels for balance. In this study, we investigated whether chronic exposure to LFN at a moderate level of 70 dB SPL affects the vestibule, which is one of the organs responsible for balance in mice. Wild-type ICR mice were exposed for 1 month to LFN (0.1 kHz) and high frequency noise (HFN; 16 kHz) at 70 dB SPL at a distance of approximately 10–20 cm. Behavior analyses including rotarod, beam-crossing and footprint analyses showed impairments of balance in LFN-exposed mice but not in non-exposed mice or HFN-exposed mice. Immunohistochemical analysis showed a decreased number of vestibular hair cells and increased levels of oxidative stress in LFN-exposed mice compared to those in non-exposed mice. Our results suggest that chronic exposure to LFN at moderate levels causes impaired balance involving morphological impairments of the vestibule with enhanced levels of oxidative stress. Thus, the results of this study indicate the importance of considering the risk of chronic exposure to LFN at a moderate level for imbalance

    Soluble CD36 Ectodomain Binds Negatively Charged Diacylglycerol Ligands and Acts as a Co-Receptor for TLR2

    Get PDF
    BACKGROUND:Cluster of differentiation 36 (CD36) is a transmembrane glycoprotein involved in many biological processes, such as platelet biology, angiogenesis and in the aetiopathology of atherosclerosis and cardiovascular diseases. Toll-like receptors (TLRs) are one of the most important receptors of the innate immune system. Their main function is the recognition of conserved structure of microorganisms. This recognition triggers signaling pathways that activate transcription of cytokines and co-stimulatory molecules which participate in the generation of an immune response against microbes. In particular, TLR2 has been shown to recognize a broad range of ligands. Recently, we showed that CD36 serves as a co-receptor for TLR2 and enhances recognition of specific diacylglycerides derived from bacteria. METHODOLOGY/ PRINCIPAL FINDINGS:Here, we investigate the mechanism by which CD36 contributes to ligand recognition and activation of TLR2 signaling pathway. We show that the ectodomain of murine CD36 (mCD36ED) directly interacts with negatively charged diacylglycerol ligands, which explains the specificity and selectivity of CD36 as a TLR2 co-receptor. We also show that mCD36ED amplifies the pro-inflammatory response to lipoteichoic acid in macrophages of wild-type mice and restores the pro-inflammatory response of macrophages from mice deficient in CD36 (oblivious), but not from mice deficient in cluster of differentiation 14 (CD14) (heedless). CONCLUSION/ SIGNIFICANCE: These data indicate that the CD36 ectodomain is the only relevant domain for activation of TLR2 signaling pathway and that CD36 and CD14 have a non-redundant role for loading ligands onto TLR2 in the plasma-membrane. The pro-inflammatory role of soluble CD36 can be relevant in the activation of the immune response against pathogens, as well as in the progression of chronic diseases. Therefore, an increased level of soluble forms of CD36, which has been reported to be increased in type II diabetic patients, could accelerate atherosclerosis by increasing the pro-inflammatory response to diacylglycerol ligands

    Six-transmembrane epithelial antigen of the prostate and enhancer of zeste homolog 2 as immunotherapeutic targets for lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>T-cell based immunotherapy for lung cancer (LC) could be a promising and novel therapeutic approach. Six-transmembrane epithelial antigen of the prostate (STEAP) and the polycomb group protein enhancer of zeste homolog 2 (EZH2) are highly expressed in LC and since the expression of molecules in normal tissue is significantly lower as compared to tumor cells, these proteins are considered as potential tumor-associated antigens (TAAs) for developing T-cell based immunotherapy.</p> <p>Methods</p> <p>We assessed the capacity of predicted CD4 T-cell epitopes from STEAP and EZH2 to induce anti-tumor immune responses to LC cell lines.</p> <p>Results</p> <p>Out of several predicted epitopes, two synthetic peptides, STEAP<sub>281-296 </sub>and EZH2<sub>95-109</sub>, were effective in inducing CD4 T-cell responses that were restricted by HLA-DR1, DR15, or DR53 molecules, indicating that the peptides function as promiscuous T-cell epitopes. Moreover, STEAP<sub>281-296 </sub>and EZH2<sub>95-109</sub>-reactive T-cells could directly recognize STEAP or EZH2 expressing LC cells in an HLA-DR restricted manner. In addition, some STEAP-reactive T-cells responded to STEAP+ tumor cell lysates presented by autologous dendric cells. Most significantly, both of these peptides were capable of stimulating <it>in vitro </it>T-cell responses in patients with LC.</p> <p>Conclusions</p> <p>Peptides STEAP<sub>281-296 </sub>and EZH2<sub>95-109 </sub>function as strong CD4 T-cell epitopes that can elicit effective anti-tumor T-cell responses against STEAP or EZH2 expressing LC. These observations may facilitate the translation of T-cell based immunotherapy into the clinic for the treatment of LC.</p

    MUC1-associated proliferation signature predicts outcomes in lung adenocarcinoma patients

    Get PDF
    Background: MUC1 protein is highly expressed in lung cancer. The cytoplasmic domain of MUC1 (MUC1-CD) induces tumorigenesis and resistance to DNA-damaging agents. We characterized MUC1-CD-induced transcriptional changes and examined their significance in lung cancer patients. Methods: Using DNA microarrays, we identified 254 genes that were differentially expressed in cell lines transformed by MUC1-CD compared to control cell lines. We then examined expression of these genes in 441 lung adenocarcinomas from a publicly available database. We employed statistical analyses independent of clinical outcomes, including hierarchical clustering, Student's t-tests and receiver operating characteristic (ROC) analysis, to select a seven-gene MUC1-associated proliferation signature (MAPS). We demonstrated the prognostic value of MAPS in this database using Kaplan-Meier survival analysis, log-rank tests and Cox models. The MAPS was further validated for prognostic significance in 84 lung adenocarcinoma patients from an independent database. Results: MAPS genes were found to be associated with proliferation and cell cycle regulation and included CCNB1, CDC2, CDC20, CDKN3, MAD2L1, PRC1 and RRM2. MAPS expressors (MAPS+) had inferior survival compared to non-expressors (MAPS-). In the initial data set, 5-year survival was 65% (MAPS-) vs. 45% (MAPS+, p < 0.0001). Similarly, in the validation data set, 5-year survival was 57% (MAPS-) vs. 28% (MAPS+, p = 0.005). Conclusions: The MAPS signature, comprised of MUC1-CD-dependent genes involved in the control of cell cycle and proliferation, is associated with poor outcomes in patients with adenocarcinoma of the lung. These data provide potential new prognostic biomarkers and treatment targets for lung adenocarcinoma

    Brain iron homeostasis, the choroid plexus, and localization of iron transport proteins

    Get PDF
    Maintenance of appropriate iron homeostasis in the brain is important, but the mechanisms involved in brain iron uptake are incompletely understood. Here, we have analyzed where messenger RNAs that encode iron transport proteins are expressed in the brain, using the Allen Brain atlas, and we conclude that several important iron transporters are highly expressed in the choroid plexus. Based on recent estimates of the surface area of the choroid plexus and on MRI imaging studies of manganese uptake in the brain, we propose that the choroid plexus may have a much greater role than has been previously appreciated in brain iron transport

    Prion Protein Modulates Cellular Iron Uptake: A Novel Function with Implications for Prion Disease Pathogenesis

    Get PDF
    Converging evidence leaves little doubt that a change in the conformation of prion protein (PrPC) from a mainly α-helical to a β-sheet rich PrP-scrapie (PrPSc) form is the main event responsible for prion disease associated neurotoxicity. However, neither the mechanism of toxicity by PrPSc, nor the normal function of PrPC is entirely clear. Recent reports suggest that imbalance of iron homeostasis is a common feature of prion infected cells and mouse models, implicating redox-iron in prion disease pathogenesis. In this report, we provide evidence that PrPC mediates cellular iron uptake and transport, and mutant PrP forms alter cellular iron levels differentially. Using human neuroblastoma cells as models, we demonstrate that over-expression of PrPC increases intra-cellular iron relative to non-transfected controls as indicated by an increase in total cellular iron, the cellular labile iron pool (LIP), and iron content of ferritin. As a result, the levels of iron uptake proteins transferrin (Tf) and transferrin receptor (TfR) are decreased, and expression of iron storage protein ferritin is increased. The positive effect of PrPC on ferritin iron content is enhanced by stimulating PrPC endocytosis, and reversed by cross-linking PrPC on the plasma membrane. Expression of mutant PrP forms lacking the octapeptide-repeats, the membrane anchor, or carrying the pathogenic mutation PrP102L decreases ferritin iron content significantly relative to PrPC expressing cells, but the effect on cellular LIP and levels of Tf, TfR, and ferritin is complex, varying with the mutation. Neither PrPC nor the mutant PrP forms influence the rate or amount of iron released into the medium, suggesting a functional role for PrPC in cellular iron uptake and transport to ferritin, and dysfunction of PrPC as a significant contributing factor of brain iron imbalance in prion disorders
    corecore