186 research outputs found

    SUE: A Special Purpose Computer for Spin Glass Models

    Full text link
    The use of last generation Programmable Electronic Components makes possible the construction of very powerful and competitive special purpose computers. We have designed, constructed and tested a three-dimensional Spin Glass model dedicated machine, which consists of 12 identical boards. Each single board can simulate 8 different systems, updating all the systems at every clock cycle. The update speed of the whole machine is 217ps/spin with 48 MHz clock frequency. A device devoted to fast random number generation has been developed and included in every board. The on-board reprogrammability permits us to change easily the lattice size, or even the update algorithm or the action. We present here a detailed description of the machine and the first runs using the Heat Bath algorithm.Comment: Submitted to Computer Physics Communications, 19 pages, 5 figures, references adde

    Asymptotic behavior of the density of states on a random lattice

    Full text link
    We study the diffusion of a particle on a random lattice with fluctuating local connectivity of average value q. This model is a basic description of relaxation processes in random media with geometrical defects. We analyze here the asymptotic behavior of the eigenvalue distribution for the Laplacian operator. We found that the localized states outside the mobility band and observed by Biroli and Monasson (1999, J. Phys. A: Math. Gen. 32 L255), in a previous numerical analysis, are described by saddle point solutions that breaks the rotational symmetry of the main action in the real space. The density of states is characterized asymptotically by a series of peaks with periodicity 1/q.Comment: 11 pages, 2 figure

    Integrable Discretizations of Chiral Models

    Full text link
    A construction of conservation laws for chiral models (generalized sigma-models on a two-dimensional space-time continuum using differential forms is extended in such a way that it also comprises corresponding discrete versions. This is achieved via a deformation of the ordinary differential calculus. In particular, the nonlinear Toda lattice results in this way from the linear (continuum) wave equation. The method is applied to several further examples. We also construct Lax pairs and B\"acklund transformations for the class of models considered in this work.Comment: 14 pages, Late

    Exchange Monte Carlo Method and Application to Spin Glass Simulations

    Full text link
    We propose an efficient Monte Carlo algorithm for simulating a ``hardly-relaxing" system, in which many replicas with different temperatures are simultaneously simulated and a virtual process exchanging configurations of these replica is introduced. This exchange process is expected to let the system at low temperatures escape from a local minimum. By using this algorithm the three-dimensional ±J\pm J Ising spin glass model is studied. The ergodicity time in this method is found much smaller than that of the multi-canonical method. In particular the time correlation function almost follows an exponential decay whose relaxation time is comparable to the ergodicity time at low temperatures. It suggests that the system relaxes very rapidly through the exchange process even in the low temperature phase.Comment: 10 pages + uuencoded 5 Postscript figures, REVTe

    Phase Transition in the Three-Dimensional ±J\pm J Ising Spin Glass

    Full text link
    We have studied the three-dimensional Ising spin glass with a ±J\pm J distribution by Monte Carlo simulations. Using larger sizes and much better statistics than in earlier work, a finite size scaling analysis shows quite strong evidence for a finite transition temperature, TcT_c, with ordering below TcT_c. Our estimate of the transition temperature is rather lower than in earlier work, and the value of the correlation length exponent, ν\nu, is somewhat higher. Because there may be (unknown) corrections to finite size scaling, we do not completely rule out the possibility that Tc=0T_c = 0 or that TcT_c is finite but with no order below TcT_c. However, from our data, these possibilities seem less likely.Comment: Postscript file compressed using uufiles. The postscript file is also available by anonymous ftp at ftp://chopin.ucsc.edu/pub/sg3d.p

    Universal Finite Size Scaling Functions in the 3D Ising Spin Glass

    Full text link
    We study the three-dimensional Edwards-Anderson model with binary interactions by Monte Carlo simulations. Direct evidence of finite-size scaling is provided, and the universal finite-size scaling functions are determined. Monte Carlo data are extrapolated to infinite volume with an iterative procedure up to correlation lengths xi \approx 140. The infinite volume data are consistent with a conventional power law singularity at finite temperature Tc. Taking into account corrections to scaling, we find Tc = 1.156 +/- 0.015, nu = 1.8 +/- 0.2 and eta = -0.26 +/- 0.04. The data are also consistent with an exponential singularity at finite Tc, but not with an exponential singularity at zero temperature.Comment: 4 pages, Revtex, 4 postscript figures include

    Monte Carlo Simulation of a Random-Field Ising Antiferromagnet

    Full text link
    Phase transitions in the three-dimensional diluted Ising antiferromagnet in an applied magnetic field are analyzed numerically. It is found that random magnetic field in a system with spin concentration below a certain threshold induces a crossover from second-order phase transition to first-order transition to a new phase characterized by a spin-glass ground state and metastable energy states at finite temperatures.Comment: 10 pages, 11 figure

    Simulating spin systems on IANUS, an FPGA-based computer

    Get PDF
    We describe the hardwired implementation of algorithms for Monte Carlo simulations of a large class of spin models. We have implemented these algorithms as VHDL codes and we have mapped them onto a dedicated processor based on a large FPGA device. The measured performance on one such processor is comparable to O(100) carefully programmed high-end PCs: it turns out to be even better for some selected spin models. We describe here codes that we are currently executing on the IANUS massively parallel FPGA-based system.Comment: 19 pages, 8 figures; submitted to Computer Physics Communication

    String Propagator: a Loop Space Representation

    Get PDF
    The string quantum kernel is normally written as a functional sum over the string coordinates and the world--sheet metrics. As an alternative to this quantum field--inspired approach, we study the closed bosonic string propagation amplitude in the functional space of loop configurations. This functional theory is based entirely on the Jacobi variational formulation of quantum mechanics, {\it without the use of a lattice approximation}. The corresponding Feynman path integral is weighed by a string action which is a {\it reparametrization invariant} version of the Schild action. We show that this path integral formulation is equivalent to a functional ``Schrodinger'' equation defined in loop--space. Finally, for a free string, we show that the path integral and the functional wave equation are {\it exactly } solvable.Comment: 15 pages, no figures, ReVTeX 3.

    Numerical Results for the Ground-State Interface in a Random Medium

    Get PDF
    The problem of determining the ground state of a dd-dimensional interface embedded in a (d+1)(d+1)-dimensional random medium is treated numerically. Using a minimum-cut algorithm, the exact ground states can be found for a number of problems for which other numerical methods are inexact and slow. In particular, results are presented for the roughness exponents and ground-state energy fluctuations in a random bond Ising model. It is found that the roughness exponent ζ=0.41±0.01,0.22±0.01\zeta = 0.41 \pm 0.01, 0.22 \pm 0.01, with the related energy exponent being θ=0.84±0.03,1.45±0.04\theta = 0.84 \pm 0.03, 1.45 \pm 0.04, in d=2,3d = 2, 3, respectively. These results are compared with previous analytical and numerical estimates.Comment: 10 pages, REVTEX3.0; 3 ps files (separate:tar/gzip/uuencoded) for figure
    • …
    corecore