17,552 research outputs found
Noise of model target type thrust reversers for engine-over-the-wing applications
The results of experiments on the noise generated by V-gutter and semicylindrical target reversers with circular and short-aspect-ratio slot nozzles having diameters of about 5 cm are presented. The experiments were conducted with cold-flow jets at velocities from 190-290 m/sec. The reversers at subsonic jet velocities had a more uniform noise distribution and higher frequency than the nozzles alone. The reverser shape was shown to be more important than the nozzle shape in determining the noise characteristics. The maximum sideline pressure level varied with the sixth power of the jet velocity, and the data were correlated for angles along the sideline. An estimate of the noise level along the 152 m sideline for an engine-over-the-wing powered-lift airplane was made
Status of noise technology for advanced supersonic cruise aircraft
Developments in acoustic technology applicable to advanced supersonic cruise aircraft, particularly those which relate to jet noise and its suppression are reviewed. The noise reducing potential of high radius ratio, inverted velocity profile coannular jets is demonstrated by model scale results from a wide range of nozzle geometries, including some simulated flight cases. These results were verified statistically at large scale on a variable cycle engine (VCE) testbed. A preliminary assessment of potential VCE noise sources such as fan and core noise is made, based on the testbed data. Recent advances in the understanding of flight effects are reviewed. The status of component noise prediction methods is assessed on the basis of recent test data, and the remaining problem areas are outlined
Noise tests of a high-aspect-ratio slot nozzle with various V-gutter target thrust reversers
The results of experiments on the noise generated by a 1.33- by 91.4 cm slot nozzle with various V-gutter reversers, and some thrust measurements are presented. The experiments were conducted with near-ambient temperature jets at nozzle pressure ratios of 1.25 to 3.0, yielding jet velocities of about 190 to 400 m/sec. At pressure ratios of 2 or less, the reversers, in addition to being noisier than the nozzle alone, also had a more uniform directional distribution and more high-frequency noise. At pressure ratios above 2, the nozzle alone generated enough shock noise that the levels were about the same as for the reversers. The maximum overall sound pressure level and the effective overall sound power level both varied with the sixth power of jet velocity over the range tested. The data were scaled up to a size suitable for reversing the wing-flap slot nozzle flow of a 45 400-kg augmentor-wing-type airplane on the ground, yielding perceived noise levels well above 95 PNdB on a 152-m sideline
Transmission eigenvalues and the bare conductance in the crossover to Anderson localization
We measure the field transmission matrix t for microwave radiation
propagating through random waveguides in the crossover to Anderson
localization. From these measurements, we determine the dimensionless
conductance, g, and the individual eigenvalues of the transmission
matrix whose sum equals g. In diffusive samples, the highest
eigenvalue, , is close to unity corresponding to a transmission of
nearly 100%, while for localized waves, the average of , is nearly
equal to g. We find that the spacing between average values of is
constant and demonstrate that when surface interactions are taken into account
it is equal to the inverse of the bare conductance.Comment: 5 pages, 5 figure
Forced-flow once-through boilers
A compilation and review of NASA-sponsored research on boilers for use in spacecraft electrical power generation systems is presented. Emphasis is on the heat-transfer and fluid-flow problems. In addition to space applications, much of the boiler technology is applicable to terrestrial and marine uses such as vehicular power, electrical power generation, vapor generation, and heating and cooling. Related research areas are discussed such as condensation, cavitation, line and boiler dynamics, the SNAP-8 project (Mercury-Rankine cycle), and conventional terrestrial boilers (either supercritical or gravity-assisted liquid-vapor separation types). The research effort was directed at developing the technology for once-through compact boilers with high heat fluxes to generate dry vapor stably, without utilizing gravity for phase separations. A background section that discusses, tutorially, the complex aspects of the boiling process is presented. Discussions of tests on alkali metals are interspersed with those on water and other fluids on a phenomenological basis
Effect of the Coriolis Force on the Hydrodynamics of Colliding Wind Binaries
Using fully three-dimensional hydrodynamic simulations, we investigate the
effect of the Coriolis force on the hydrodynamic and observable properties of
colliding wind binary systems. To make the calculations tractable, we assume
adiabatic, constant velocity winds. The neglect of radiative driving,
gravitational deceleration, and cooling limit the application of our models to
real systems. However, these assumptions allow us to isolate the effect of the
Coriolis force, and by simplifying the calculations, allow us to use a higher
resolution (up to 640^3) and to conduct a larger survey of parameter space. We
study the dynamics of collidng winds with equal mass loss rates and velocities
emanating from equal mass stars on circular orbits, with a range of values for
the ratio of the wind to orbital velocity. We also study the dynamics of winds
from stars on elliptical orbits and with unequal strength winds. Orbital motion
of the stars sweeps the shocked wind gas into an Archimedean spiral, with
asymmetric shock strengths and therefore unequal postshock temperatures and
densities in the leading and trailing edges of the spiral. We observe the
Kelvin-Helmholtz instability at the contact surface between the shocked winds
in systems with orbital motion even when the winds are identical. The change in
shock strengths caused by orbital motion increases the volume of X-ray emitting
post-shock gas with T > 0.59 keV by 63% for a typical system as the ratio of
wind velocity to orbital velocity decreases to V_w/V_o = 2.5. This causes
increased free-free emission from systems with shorter orbital periods and an
altered time-dependence of the wind attenuation. We comment on the importance
of the effects of orbital motion on the observable properties of colliding wind
binaries.Comment: 12 pages, 17 figures, accepted for publication in Ap
Edge helicons and repulsion of fundamental edge magnetoplasmons in the quantum Hall regime
A quasi-microscopic treatment of edge magnetoplasmons (EMP) is presented for
very low temperatures and confining potentials smooth on the scale of the
magnetic length but sufficiently steep at the edges such that Landau
level (LL) flattening can be discarded. The profile of the unperturbed electron
density is sharp and the dissipation taken into account comes only from
electron intra-edge and intra-LL transitions due to scattering by acoustic
phonons. For wide channels and filling factors and 2, there exist
independent EMP modes spatially symmetric and antisymmetric with respect to the
edge. Some of these modes, named edge helicons, can propagate nearly undamped
even when the dissipation is strong. Their density profile changes
qualitatively during propagation and is given by a rotation of a complex vector
function. For the Coulomb coupling between the LLs leads to a
repulsion of the uncoupled fundamental LL modes: the new modes have very
different group velocities and are nearly undamped. The theory accounts well
for the experimentally observed plateau structure of the delay times as well as
for the EMP's period and decay rates.Comment: 12 pages, 6 figure
Ab initio investigation of intermolecular interactions in solid benzene
A computational strategy for the evaluation of the crystal lattice constants
and cohesive energy of the weakly bound molecular solids is proposed. The
strategy is based on the high level ab initio coupled-cluster determination of
the pairwise additive contribution to the interaction energy. The
zero-point-energy correction and non-additive contributions to the interaction
energy are treated using density functional methods. The experimental crystal
lattice constants of the solid benzene are reproduced, and the value of 480
meV/molecule is calculated for its cohesive energy
Non-covalent interactions across organic and biological subsets of chemical space: Physics-based potentials parametrized from machine learning
Classical intermolecular potentials typically require an extensive
parametrization procedure for any new compound considered. To do away with
prior parametrization, we propose a combination of physics-based potentials
with machine learning (ML), coined IPML, which is transferable across small
neutral organic and biologically-relevant molecules. ML models provide
on-the-fly predictions for environment-dependent local atomic properties:
electrostatic multipole coefficients (significant error reduction compared to
previously reported), the population and decay rate of valence atomic
densities, and polarizabilities across conformations and chemical compositions
of H, C, N, and O atoms. These parameters enable accurate calculations of
intermolecular contributions---electrostatics, charge penetration, repulsion,
induction/polarization, and many-body dispersion. Unlike other potentials, this
model is transferable in its ability to handle new molecules and conformations
without explicit prior parametrization: All local atomic properties are
predicted from ML, leaving only eight global parameters---optimized once and
for all across compounds. We validate IPML on various gas-phase dimers at and
away from equilibrium separation, where we obtain mean absolute errors between
0.4 and 0.7 kcal/mol for several chemically and conformationally diverse
datasets representative of non-covalent interactions in biologically-relevant
molecules. We further focus on hydrogen-bonded complexes---essential but
challenging due to their directional nature---where datasets of DNA base pairs
and amino acids yield an extremely encouraging 1.4 kcal/mol error. Finally, and
as a first look, we consider IPML in denser systems: water clusters,
supramolecular host-guest complexes, and the benzene crystal.Comment: 15 pages, 9 figure
- …