1,610 research outputs found

    Pheochromocytoma diagnosed during pregnancy: lessons learned from a series of ten patients

    Get PDF
    BACKGROUND: Pheochromocytoma (PHEO) in pregnancy is a life-threatening condition. Its management is challenging with regards to the timing and type of surgery. METHODS: A retrospective review of the management of ten patients diagnosed with pheochromocytoma during pregnancy was performed. Data were collected on the initial diagnostic workup, symptoms, treatment, and follow-up. RESULTS: PHEO was diagnosed in ten patients who were between the 10th and the 29th weeks of pregnancy. Six patients had none to mild symptoms, while four had complications of paroxysmal hypertension. Imaging investigations consisted of MRI, CT scan and ultrasounds. All had urinary metanephrines, measured as part of their workup. Three patients had MEN 2A, one VHL syndrome, one suspected SDH mutation. All patients were treated either with α/β blockers or calcium channel blockers to stabilize their clinical conditions. Seven patients underwent a laparoscopic adrenalectomy before delivery. Three out of these seven patients had a bilateral PHEO and underwent a unilateral adrenalectomy of the larger tumor during pregnancy, followed by a planned cesarean section and a subsequent contralateral adrenalectomy within a few months after delivery. Three patients had emergency surgery for maternal or fetal complications, with C-section followed by concomitant or delayed adrenalectomy. All newborns from the group of planned surgery were healthy, while two out three newborns within the emergency surgery group died shortly after delivery secondary to cardiac and pulmonary complications. CONCLUSIONS: PHEO in pregnancy is a rare condition. Maternal and fetal prognosis improved over the last decades, but still lethal consequences may be present if misdiagnosed or mistreated. A thorough multidisciplinary team approach should be tailored on an individual basis to better manage the pathology. Unilateral adrenalectomy in a pregnant patient with bilateral PHEO may be an option to avoid the risk of adrenal insufficiency after bilateral adrenalectomy

    Relating Physical Observables in QCD without Scale-Scheme Ambiguity

    Full text link
    We discuss the St\"uckelberg-Peterman extended renormalization group equations in perturbative QCD, which express the invariance of physical observables under renormalization-scale and scheme-parameter transformations. We introduce a universal coupling function that covers all possible choices of scale and scheme. Any perturbative series in QCD is shown to be equivalent to a particular point in this function. This function can be computed from a set of first-order differential equations involving the extended beta functions. We propose the use of these evolution equations instead of perturbative series for numerical evaluation of physical observables. This formalism is free of scale-scheme ambiguity and allows a reliable error analysis of higher-order corrections. It also provides a precise definition for ΛMS\Lambda_{\overline{\rm MS}} as the pole in the associated 't Hooft scheme. A concrete application to R(e+ehadrons)R(e^+e^- \to {\rm hadrons}) is presented.Comment: Plain TEX, 4 figures (available upon request), 22 pages, DOE/ER/40322-17

    Tau neutrino deep inelastic charged current interactions

    Full text link
    The nu_mu -> nu_tau oscillation hypothesis will be tested through nu_tau production of tau in underground neutrino telescopes as well as long-baseline experiments. We provide the full QCD framework for the evaluation of tau neutrino deep inelastic charged current (CC) cross sections, including next-leading-order (NLO) corrections, charm production, tau threshold, and target mass effects in the collinear approximation. We investigate the violation of the Albright-Jarlskog relations for the structure functions F_4,5 which occur only in heavy lepton (tau) scattering. Integrated CC cross sections are evaluated naively over the full phase space and with the inclusion of DIS kinematic cuts. Uncertainties in our evaluation based on scale dependence, PDF errors and the interplay between kinematic and dynamical power corrections are discussed and/or quantified.Comment: 28 pages, 10 figure

    Strong Coupling Constant with Flavour Thresholds at Four Loops in the MS-bar Scheme

    Full text link
    We present in analytic form the matching conditions for the strong coupling constant alpha_s^(n_f)(mu) at the flavour thresholds to three loops in the modified minimal-subtraction scheme. Taking into account the recently calculated coefficient beta_3 of the Callan-Symanzik beta function of quantum chromodynamics, we thus derive a four-loop formula for alpha_s^(n_f)(mu) together with appropriate relationships between the asymptotic scale parameters Lambda^(n_f) for different numbers of flavours n_f.Comment: 10 pages (Latex), 3 figures (Postscript

    Remarks on a class of renormalizable interpolating gauges

    Get PDF
    A class of covariant gauges allowing one to interpolate between the Landau, the maximal Abelian, the linear covariant and the Curci-Ferrari gauges is discussed. Multiplicative renormalizability is proven to all orders by means of algebraic renormalization. All one-loop anomalous dimensions of the fields and gauge parameters are explicitly evaluated in the MSbar scheme.Comment: 24 pages. no figure

    Higher moments of nucleon spin structure functions in heavy baryon chiral perturbation theory and in a resonance model

    Full text link
    The third moment d2d_2 of the twist-3 part of the nucleon spin structure function g2g_2 is generalized to arbitrary momentum transfer Q2Q^2 and is evaluated in heavy baryon chiral perturbation theory (HBChPT) up to order O(p4){\mathcal{O}}(p^4) and in a unitary isobar model (MAID). We show how to link d2d_2 as well as higher moments of the nucleon spin structure functions g1g_1 and g2g_2 to nucleon spin polarizabilities. We compare our results with the most recent experimental data, and find a good description of these available data within the unitary isobar model. We proceed to extract the twist-4 matrix element f2f_2 which appears in the 1/Q21/Q^2 suppressed term in the twist expansion of the spin structure function g1g_1 for proton and neutron.Comment: 30 pages, 7 figure

    Comparison of the Pade Approximation Method to Perturbative QCD Calculations

    Get PDF
    We present a method of estimating perturbative coefficients in Quantum Field Theory using Pade Approximants. We test this method on various known QCD results, and find that the method works very well.Comment: 14 pages (phyzzx macropackage) + 1 postscript figure encoded through uufiles, appended at the end of the tex file. Additional relevant references adde

    The nonperturbative propagator and vertex in massless quenched QED_d

    Full text link
    It is well known how multiplicative renormalizability of the fermion propagator, through its Schwinger-Dyson equation, imposes restrictions on the 3-point fermion-boson vertex in massless quenched quantum electrodynamics in 4-dimensions (QED4_4). Moreover, perturbation theory serves as an excellent guide for possible nonperturbative constructions of Green functions. We extend these ideas to arbitrary dimensions dd. The constraint of multiplicative renormalizability of the fermion propagator is generalized to a Landau-Khalatnikov-Fradkin transformation law in dd-dimensions and it naturally leads to a constraint on the fermion-boson vertex. We verify that this constraint is satisfied in perturbation theory at the one loop level in 3-dimensions. Based upon one loop perturbative calculation of the vertex, we find additional restrictions on its possible nonperturbative forms in arbitrary dimensions.Comment: 13 pages, no figures, latex (uses IOP style files

    Testing Landau gauge OPE on the Lattice with a <A2><A^2> Condensate

    Get PDF
    Using the operator product expansion we show that the O(1/p2)O(1/p^2) correction to the perturbative expressions for the gluon propagator and the strong coupling constant resulting from lattice simulations in the Landau gauge are due to a non-vanishing vacuum expectation value of the operator AμAμA^\mu A_\mu. This is done using the recently published Wilson coefficients of the identity operator computed to third order, and the subdominant Wilson coefficient computed in this paper to the leading logarithm. As a test of the applicability of OPE we compare the estimated from the gluon propagator and the one from the coupling constant in the flavourless case. Both agree within the statistical uncertainty: 1.64(15)\sqrt{} \simeq 1.64(15) GeV. Simultaneously we fit \Lams = 233(28) MeV in perfect agreement with previous lattice estimates. When the leading coefficients are only expanded to two loops, the two estimates of the condensate differ drastically. As a consequence we insist that OPE can be applied in predicting physical quantities only if the Wilson coefficients are computed to a high enough perturbative order.Comment: 15 pages, LaTex file with 5 figure

    Nontrivial, Asymptotically Non-free Gauge Theories and Dynamical Unification of Couplings

    Full text link
    An evidence for nontriviality of asymptotically non-free (ANF) Yang-Mills theories is found on the basis of optimized perturbation theory. It is argued that these theories with matter couplings can be made nontrivial by means of the reduction of couplings, leading to the idea of dynamical unification of couplings (DUC) The second-order reduction of couplings in the ANF SU(3)SU(3)-gauged Higgs-Yukawa theory, which is assumed to be nontrivial here, is carried out to motivate independent investigations on its nontriviality and DUC
    corecore