6,368 research outputs found

    Trade Credit, International Reserves and Sovereign Debt

    Get PDF
    We present a unified model of sovereign debt, trade credit and international reserves. Our model shows that access to short-term trade credit and gross international reserves critically affect the outcome of sovereign debt renegotiations. Whereas competitive banks do optimally lend for the accumulation of borrowed reserves that strengthen the bargaining position of borrowers, they also have incentives to restrict the supply of short-term trade credit during renegotiations. We first show that they effectively do so and then derive propositions that : I) establish the size of sovereign debt haircuts as a function of economic fundamentals and preferences ; II) predict that defaults occur during recessions rather than booms, contrary to reputation based models ; III) provide a rationale for holding costly borrowed reserves and, IV) show that the stock of borrowed international reserves tends to increase when global interest rates are low.

    Generalization of the Schott energy in electrodynamic radiation theory

    Get PDF
    We discuss the origin of the Schott energy in the Abraham-Lorentz version of electrodynamic radiation theory and how it can be used to explain some apparent paradoxes. We also derive the generalization of this quantity for the Ford-O'Connell equation, which has the merit of being derived exactly from a microscopic Hamiltonian for an electron with structure and has been shown to be free of the problems associated with the Abraham-Lorentz theory. We emphasize that the instantaneous power supplied by the applied force not only gives rise to radiation (acceleration fields), but it can change the kinetic energy of the electron and change the Schott energy of the velocity fields. The important role played by boundary conditions is noted

    Rotation and Spin in Physics

    Full text link
    We delineate the role of rotation and spin in physics, discussing in order Newtonian classical physics, special relativity, quantum mechanics, quantum electrodynamics and general relativity. In the latter case, we discuss the generalization of the Kepler formula to post-Newtonian order (c2(c^{-2}) including spin effects and two-body effects. Experiments which verify the theoretical results for general relativistic spin-orbit effects are discussed as well as efforts being made to verify the spin-spin effects

    On risk aversion in the Rubinstein bargaining game

    Get PDF
    We derive closed-form solutions for the Rubinstein alternating offers game for cases where the two players have (possibly asymmetric) utility functions that belong to the HARA class and discount the future at a constant rate. We show that risk aversion may increase a bargainers payoff. This result - which contradicts Roth’s 1985 theorem tying greater risk neutrality to a smaller payoff - does not rely on imperfect information or departures from expected utility maximization

    Signatures of the Youngest Starbursts: Optically-thick Thermal Bremsstrahlung Radio Sources in Henize 2-10

    Full text link
    VLA radio continuum imaging reveals compact (<8 pc) ~1 mJy radio sources in the central 5" starburst region of the blue compact galaxy Henize 2-10. We interpret these radio knots as extremely young, ultra-dense HII regions. We model their luminosities and spectral energy distributions, finding that they are consistent with unusually dense HII regions having electron densities, 1500 cm^-3 < n_e < 5000 cm^-3, and sizes of 3-8 pc. Since these H II regions are not visible in optical images, we propose that the radio data preferentially reveal the youngest, densest, and most highly obscured starforming events. Energy considerations imply that each of the five \HII regions contains ~750 O7V equivalent stars, greater than the number found in 30 Doradus in the LMC. The high densities imply an over-pressure compared to the typical interstellar medium so that such objects must be short-lived (<0.5 Myr expansion timescales). We conclude that the radio continuum maps reveal the very young (<0.5 Myr) precursors of ``super starclusters'' or ``proto globular clusters'' which are prominent at optical and UV wavelengths in He 2-10. If the ultra-dense HII regions are typical of those which we predict will be found in other starbursting systems, then super starclusters spend 15% of their lifetime in heavily-obscured environments, similar to Galactic ultra-compact HII regions. This body of work leads us to propose that massive extragalactic star clusters (i.e. proto globular clusters) with ages <10^6 yr may be most easily identified by finding compact radio sources with optically-thick thermal bremsstrahlung spectral signatures.Comment: AASTeX, 8 figures 2 included with psfig in text; other 6 in jpeg format; Postscript versions of figures may be found at http://zem.ucolick.org/chip/Research/young_clusters.html -- Accepted for publication in the Astrophysical Journa

    Underdogs: The Making of the Modern Marine Corps

    Get PDF

    Balmer and Metal Absorption Feature Gradients in M32

    Full text link
    Spectra from MDM Observatory are used to assess Lick/IDS feature strength gradients inside the half-light radius of the compact Local Group elliptical galaxy M32. All but a few (of 24 measured) indices show a statistically significant gradient. Comparing with models, the index gradients indicate a mean age and abundance gradient in the sense that the nucleus is a factor of 2.5 younger and a factor of 0.3 dex more metal-rich than at 1 effective radius. This conclusion is only weakly dependent on which index combinations are used and is robust to high accuracy. Stars near the M32 nucleus have a mean age and heavy element abundance [M/H] of (4.7 Gyr, +0.02), judging from models by Worthey with variable abundance ratios. This result has very small formal random errors, although, of course, there is significant age-metallicity degeneracy along an (age, abundance) line segment from (5.0 Gyr, 0.00) to (4.5 Gyr, +0.05). An abundance pattern of [C/M]=+0.077, [N/M]=-0.13, [Mg/M]=-0.18, [Fe/M]~0.0, and [Na/M]=+0.12 is required to fit the feature data, with a fitting precision of about 0.01 dex. Model uncertainties make the accuracies of these values at least twice the magnitude of the precision. Forcing scaled-solar abundances does not change the age very much, but it increases the rms goodness of model-data fit by a factor of 3 and broadens the allowed range of age to ±1\pm 1 Gyr. The overall abundance pattern contrasts with larger elliptical galaxies, in which all measurable lighter elements are enhanced relative to iron and calcium.Comment: 23 pages, 9 figures, Astronomical Journal, in pres

    Transformed Dissipation in Superconducting Quantum Circuits

    Full text link
    Superconducting quantum circuits must be designed carefully to avoid dissipation from coupling to external control circuitry. Here we introduce the concept of current transformation to quantify coupling to the environment. We test this theory with an experimentally-determined impedance transformation of 105\sim 10^5 and find quantitative agreement better than a factor of 2 between this transformation and the reduced lifetime of a phase qubit coupled to a tunable transformer. Higher-order corrections from quantum fluctuations are also calculated with this theory, but found not to limit the qubit lifetime. We also illustrate how this simple connection between current and impedance transformation can be used to rule out dissipation sources in experimental qubit systems.Comment: 4 pages, 4 figure
    corecore