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Abstract

We derive closed-form solutions for the Rubinstein alternating of-
fers game for cases where the two players have (possibly asymmetric)
utility functions that belong to the HARA class and discount the fu-
ture at a constant rate. We show that risk aversion may increase a
bargainers payoff. This result - which contradicts Roth’s 1985 theo-
rem tying greater risk neutrality to a smaller payoff - does not rely on
imperfect information or departures from expected utility maximiza-
tion.
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1 Introduction

In the celebrated Rubinstein (1982) bargaining game, the parties to a bilat-

eral negotiation make alternating offers on how to split an economic surplus

(normalized here to size 1). The players discount the future and are there-

fore impatient to conclude the negotiation. In the case of linear utility and

constant discount rates, the game has a unique subgame-perfect equilibrium

(SPE) in which agreement is immediate and the parties receive

eq = δ + δeδh
δ + eδ + δeδh and q =

eδ
δ + eδ + δeδh, (1)

respectively, where eδ ∈ (0, 1) and δ ∈ (0, 1) are the discount rates of player

1 and player 2 and h is the length of the interval between offers (player 1

makes the first offer and is denoted throughout by ~). The game confers a

‘first-mover’ advantage on player 1, but this artefact disappears as the time

interval between offers shrinks to zero. In the limit, payoffs depend only on

the relative impatience of the players:

eq = δ

δ + eδ and q =
eδ

δ + eδ . (2)

When discount rates are equal, the alternating offers game generates the

familiar Nash Bargaining Solution (NBS) of a 50-50 split. For arbitrary

discount rates ∈ [0, 1], Binmore (1987a) showed that the Rubinstein equilib-

rium corresponds to a generalized NBS in which the bargaining powers of

the players are inversely related to their discount rates.
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Rubinstein’s analysis has proven its worth not only in the game theory

literature but also in applied theory and empirical work (e.g., Shaked and

Sutton 1984, Bulow and Rogoff 1989, Muthoo 1996 and Binmore 2007a).

In an applied context, however, the assumption of linear utility is restric-

tive, and particularly so if the possibility of delay is viewed as central to

how players behave. Broad categories of microeconomic behaviour under

uncertainty — including applications that might well incorporate aspects of

bilateral monopoly — cannot be understood without appeal to some form of

risk aversion. At the same time, a great deal of empirical evidence in macro-

economics and modern consumption theory in particular suggests positive

risk aversions.

Theorists have long since moved beyond linearity in studying the alter-

nating offers game (Binmore, Osborne and Rubinstein 1992 survey early

contributions). Our interest, however, is more specific: what is the impact of

concavity on bargaining payoffs? Roth (1985 and 1989) studies this question

in the alternating offers game and finds that greater risk aversion decreases

a bargainers’ share. 1 To our knowledge, departures from Roth’s finding

have relied either on the inclusion of lotteries in the set of possible outcomes

(Roth and Rothblum 1982), on imperfect information (Osborne 1984), or

on departures from the expected utility maximization paradigm (Volij and

Winter 2002).

1As he notes, risk aversion in a non-stochastic environment refers purely to strategic
risk - the risk that agreement is delayed - rather than probabilistic risk.
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From an applied perspective, the impact of Roth’s result has been limited

by the absence of closed-form solutions for the risk-averse case. We show in

this paper, however, that the linear case is nested within a broader class

of cases incorporating alternative and possibly asymmetric degrees of risk

aversion. We derive closed form solutions for the alternating offers game

for cases in which the two players have utility functions that belong to the

hyperbolic absolute risk aversion class (HARA) and have constant discount

rates.

The analysis that is closest to ours is that of Binmore (2007b), who derives

a closed-form solution to the alternating offers game when the players have

iso-elastic utility functions u(z) = zσ for 0 < σ < 1. Our approach differs

from Binmore’s, however, in some important respects. First, we solve the

alternating offers game for the entire class of HARA utility functions. Second,

in direct contrast to Roth (1985) and the subsequent literature (e.g. Binmore

(2007b)), we find that the impact of risk aversion on payoffs can be positive.

We illustrate this with a case in which one player displays decreasing absolute

risk aversion (DARA). Contrary to previous studies, this contradiction of

Roth does not rely on imperfect information or on departures from expected

utility maximization. Third, Binmore’s analysis is restricted to situations in

which both players display risk aversions below one. The bulk of empirical

evidence, however, places the degree of relative risk aversion above unity.

Our analysis of DARA utility functions covers a much broader spectrum of
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risk aversions.

2 Preliminaries: linear utility

Consider the alternating offers game over a division of a pie of size one

(Rubinstein 1982).

For the game starting at time t, the minimal initial offer by player 1 in

any SPE, q[1]t , must leave player 2 indifferent between accepting that amount

and rejecting it in order to make its own best counter-offer in the following

period. Hence

u(q
[1]
t ) = β(h)u(q

[2]
t+h), (3)

where h is the (exogenous) time interval between offers, β(h) = (1+ δh)−1 is

the discount factor player 2 applies to future utility, and q
[2]
t+h is the largest

share player 2 can hope to retain when it makes its counter-offer. By the

same argument, q[2]t+h must leave player 1 indifferent between accepting and

rejecting. Hence

eu(1− q
[2]
t+h) =

eβ(h)eu(1− q
[1]
t+2h) (4)

where ~ refers to player 1.

When utility functions are linear, equations (3) and (4) yield the difference

equation

q
[1]
t = β[1− eβ(1− q

[1]
t+2h)], (5)
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with stationary solution

qS(h) =
β(1− eβ)
1− βeβ (6)

or, equivalently, (1). When both players discount the future the transversality

condition

lim
τ→∞

(βeβ)τ/2hq[1]t+τ = 0 (7)

holds for any h > 0 and establishes q[1]t = qS as the unique solution to (5).

A straightforward argument then establishes that (6) also characterizes

player 1’s maximal equilibrium offer (Shaked and Sutton 1984, Rubinstein

1987, Binmore 1987b). Equilibrium is therefore unique. The players employ

stationary strategies, with player 1 offering qS whenever it has the offer,

always accepting anything at least as good as 1 − qS, and always rejecting

anything worse than 1 − qS (player 2 does the reverse). Implementation is

immediate: player 2 accepts player 1’s first offer. Equation (6) approaches

equation (2) as the time period between offers goes to zero.

3 The Rubinstein game with utility functions

of the HARA class

We show in this section that linear utility is nested within a much broader

class that generates closed-form solutions to the Rubinstein game. To see

this, note that in the general case equations (3) and (4) imply the recursion

q
[1]
t = u−1[βu{1− eu−1(eβeu(1− q

[1]
t+2h))}]. (8)
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The properties of (8) are governed by those of the composite function

g(x) = u−1(mu(x − n)), for constants m and n. This function is linear in

x for any member of the widely-used HARA class of utility functions first

described by Merton 1971:

u(x) =
γ

1− γ

µ
ax

γ
+ d

¶1−γ
where

ax

γ
+ d ≥ 0. (9)

The Arrow-Pratt measure of risk aversion ρ(x) for this class of utility func-

tions equals aγ/(ax+ dγ). It is easy to see that linear utility prevails when-

ever γ = 0. Given HARA utility, the composite function g(·) takes the form

g(x) = m1/(1−γ)(x− n) + (m1/(1−γ) − 1)γd/a.

Defining the modified discount factors eb = eβ1/(1−γ) and b = β1/(1−γ), the

shift parameters ek = eγ ed/ea and k = γd/a and applying g(·) where needed in

equation (8), we obtain a straightforward generalization of (5): 2

q
[1]
t = b(1−eb)[1 + ek] + (b− 1)k + (beb)q[1]t+2h. (10)

Proposition 1 When utility functions are in the HARA class, the Rubin-

stein alternating offers game with discounting has a unique SPE. As the

interval between offers goes to zero, the payoff received by player 2 (with

discount factor β) is given by

q =
eδ0(1 + ek)− δ0k

δ0 + eδ0 (11)

where δ0 = δ/(1− γ) and eδ0 = eδ/(1− eγ).
2For a player displaying log utility (e.g., eγ = 1, for player 1), we replace the corre-

sponding modified discount factor with eb = exp(eβ) ∈ (1, e).
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Proof. To obtain (11), take the limit of the expression

qS(h) =
b(1−eb)³1 + ek´+ (b− 1)k

1− beb
as h→ 0 and apply L’Hospital’s rule.

Note that there is a discontinuity in the ’modified discount factors’ eδ0 and
δ0 at γ = 1. As they become negative for γ > 1, this cases formally fall

outside the framework of Rubinstein (1982). 3 Throughout, we therefore

focus on the cases where γ ∈ [0, 1].

The properties of (11) are intuitive. First, the solution reduces to (2) when

preferences are linear (i.e. eγ = γ = 0). Second, symmetry of preferences

produces a 50/50 split. Third, when both players display constant relative

risk aversion (i.e. when ek = k = 0) we have q = eδ0/(δ0 + eδ0) and the risk
tolerance of the players affects the solution only if it differs across players;

otherwise the solution for the linear case continues to hold even when the

players are both risk averse. Since γ corresponds to the relative risk aversion

in the iso-elastic case, the game leads to well behaved solutions only as long

as relative risk aversions stay below unity.

3Rubinstein required that the side payment needed to compensate a player for delay be
an increasing function of the payment being delayed. Thus w would have to be increasing
in x in u(x) = βu(x+ w) . But for HARA w(x) = [(1− b)/b](x+ k), which is decreasing
in x for ḃ > 1. With CRRA only cases in which risk aversion is below unity respect
Rubinstein’s regularity condition.
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4 Effects of risk aversion on payoffs

Equation (11) allows us to study the impact of risk aversion on a player’s

payoff. Moreover, it allows us to conclude that Roth’s 1985 theorem tying

greater risk neutrality to a smaller bargaining share does not hold generally.

To see this, consider the case in which player 2 has a utility function that

displays decreasing absolute risk aversion (DARA) while player 1 is risk neu-

tral. This configuration pitching a risk averse player against a risk neutral

is of considerable practical interest, with potential applications to insurance,

credit, land tenure, and employment relationships, to mention just a few.

Let a = 1, d = −1 so that we have

eu(x) = eax and u(x) =
γ

1− γ

µ
x

γ
− 1
¶1−γ

.

It is easy to verify that the Arrow-Pratt measure of risk aversion ρ(x) for

player 2 is strictly increasing in the preference parameter γ ∈ [0, 1]. Note

that, in this case, the restriction in (9), that guarantees that the DARA utility

function is well defined becomes x ≥ γ. To ensure that utility is defined for

all feasible bargains q ∈ [0, 1], assume that players receive endowments at

the rate eω and ω per period. The endowments assure that the problem is

well specified for all γ ≤ hω. With the above specification the difference

equations (3) and (4) simplify to

q
[1]
t = (hω − γ)(b− 1) + bq

[2]
t+h, (12)
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Figure 1: Linear vs. DARA
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q
[2]
t+h = (1 + heω)(1−eb) +ebq[1]t+2h. (13)

Substituting (13) into (12) then establishes

qS(h) =
b(1−eb)(1 + heω) + (b− 1)(hω − γ)

1− beb (14)

as the unique solution to the bargaining game.

As an example, consider the case where eω = 0 and both players discount
the future at the same rate, i.e. eδ = δ. We set ω = 0.95, h = 1, and δ = 0.01,

with the parameter γ varying between 0 and hω. The Figure shows how the

payoff of player 2 is affected by increases in γ. Starting from a payoff of 0.02,

when γ and the (endogenous) risk aversion are zero, the payoff of player 2

gradually increases as γ and risk aversion grow.

The example above makes it clear that Roth’s theorem linking greater

risk aversion to lower payoffs is not general, and does not hold in the case of
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DARA utility functions. In the Appendix we explain why his theorem only

holds when the parameter d is equal to zero.
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Appendix

In his proof Roth relied on a normalization of the utility function to force

it through u(0) = 0 . He then defined an increase in risk aversion as an

increasing and concave transformation of the utility function. For utility

functions belonging to the HARA class, we can generate such a transfor-

mation by replacing γ ∈ [0, 1] by bγ > γ, where bγ is also between zero and
one. When the utility function is given by equation (9), the transformation

bu(x) = g[u(x)] satisfies

g(z) =
bγγ
1− bγ [f(z) + (bγ − γ)d]1−γ ≥ 0,

where f(z) = [((1− γ)/γγ)z]1/(1−γ) ≥ 0. It is straightforward to verify that

g is an increasing function whenever d ≥ 0 or else, whenever bγ is sufficiently
small:

g0(z) =
bγγ
1− γ

[f(z) + (bγ − γ)d]−γ [f(z)]γ > 0.
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Furthermore, since bγ > γ, a sufficient condition for g to be concave is d ≤ 0:

g00(z) =
bγγ

γγ(1− γ)
f(z)2γ−1 [f(z) + (bγ − γ)d]−γ−1 (f(z)− γd)(γ − bγ).

If d = 0, the transformation preserves g(0) = 0, as Roth assumed in his proof

(p. 209). This normalization is not feasible, however, when d differs from

zero, because in this case the transformation also involves a shift along the

horizontal axis that is proportional to (bγ − γ)d. Within the HARA class,

therefore, Roth’s proof is less general than it appears. Our counterexample

shows that his normalization assumption is not without loss of generality.
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