934 research outputs found
Use of Potassium Nitrate on Mango Flowering
Review of the authors' experiments in Hawaii suggested that potassium nitrate did not induce flowering but probably stimulated growth of terminal buds, and flowering was determined by the condition of those buds or the environmental conditions at the time. Genotypic differences in response to the treatment were noted
Optimizing Germination of Papaya Seeds
Field germination of papaya seeds can be greatly improved by soaking them before planting in an aqueous solution of potassium nitrate (KNO3). Germination percentage of both fresh and dried seeds can be increased with this method. The time to germination after the soaking treatment is reduced, and maximum germination is achieved sooner than when untreated seeds are planted
Effect of Storage Temperatures on Color of Tomato Fruit (Solanum Lycopersicum Mill.) Cultivated under Moderate Water Stress Treatment
AbstractModerate water stress tomato cultivated hydroponically in the greenhouse contains high lycopene and very sensitive to storage temperatures. This study aimed to observe the effect of storage temperatures on the lycopene content and color quality parameters of tomato (both moderate water stress and no water stress tomato). The lycopene content of water stress tomato increased with the temperatures higher than 10°C while no water stress tomato relatively stable or increased slightly. The lightness (L*) value of water stress and no water stress tomato decreased during storage in 10, 15, 25 and 30°C temperatures. The redness (a*), yellowness (b*), a*/b*, hue (h), and chroma (C*) remained stable after 4 days storage in those temperatures. Storage with temperatures above 15°C increased the color parameters value of both water stress and no water stress tomato. Moderate water stress treatment increased the redness color and harvesting tomato in ripening stage will only shows lightness (L*) major change during storage
Quasiparticles and Energy Scaling in BiSrCaCuO (=1-3): Angle-Resolved Photoemission Spectroscopy
Angle-resolved photoemission spectroscopy (ARPES) has been performed on the
single- to triple-layered Bi-family high-{\it T} superconductors
(BiSrCaCuO, =1-3). We found a sharp
quasiparticle peak as well as a pseudogap at the Fermi level in the
triple-layered compound. Comparison among three compounds has revealed a
universal rule that the characteristic energies of superconducting and
pseudogap behaviors are scaled with the maximum {\it T}.Comment: 4 pages, 4 figure
Physics of Ultra-Peripheral Nuclear Collisions
Moving highly-charged ions carry strong electromagnetic fields that act as a
field of photons. In collisions at large impact parameters, hadronic
interactions are not possible, and the ions interact through photon-ion and
photon-photon collisions known as {\it ultra-peripheral collisions} (UPC).
Hadron colliders like the Relativistic Heavy Ion Collider (RHIC), the Tevatron
and the Large Hadron Collider (LHC) produce photonuclear and two-photon
interactions at luminosities and energies beyond that accessible elsewhere; the
LHC will reach a energy ten times that of the Hadron-Electron Ring
Accelerator (HERA). Reactions as diverse as the production of anti-hydrogen,
photoproduction of the , transmutation of lead into bismuth and
excitation of collective nuclear resonances have already been studied. At the
LHC, UPCs can study many types of `new physics.'Comment: 47 pages, to appear in Annual Review of Nuclear and Particle Scienc
Magneto-Optical Studies of Exciton Effects in Layer-Type Semiconductors
Both experimental and theoretical works were performed with particular reference to a layer-type semiconductor, GaSe, for a coherent treatment of the exciton-like and the oscillatory Landau-like spectra appearing in a form of their combination in semiconductors in magnetic fields. The interband magneto-absorption and the Faraday rotation were measured in pulsed magnetic fields up to ~200 kOe at low temperatures. The theoretical analysis was based mainly on the exact solution for an extremely anisotropic semiconductor in the magnetic field of arbitrary intensity. The exciton effects are discussed in terms of the energy spectrum, the spectral intensity, and the spectral width by the use of the band parameters deduced from the experimental results
A Structural and Functional Comparison Between Infectious and Non-Infectious Autocatalytic Recombinant PrP Conformers
Infectious prions contain a self-propagating, misfolded conformer of the prion protein termed PrPSc. A critical prediction of the protein-only hypothesis is that autocatalytic PrPSc molecules should be infectious. However, some autocatalytic recombinant PrPSc molecules have low or undetectable levels of specific infectivity in bioassays, and the essential determinants of recombinant prion infectivity remain obscure. To identify structural and functional features specifically associated with infectivity, we compared the properties of two autocatalytic recombinant PrP conformers derived from the same original template, which differ by \u3e105-fold in specific infectivity for wild-type mice. Structurally, hydrogen/deuterium exchange mass spectrometry (DXMS) studies revealed that solvent accessibility profiles of infectious and non-infectious autocatalytic recombinant PrP conformers are remarkably similar throughout their protease-resistant cores, except for two domains encompassing residues 91-115 and 144-163. Raman spectroscopy and immunoprecipitation studies confirm that these domains adopt distinct conformations within infectious versus non-infectious autocatalytic recombinant PrP conformers. Functionally, in vitro prion propagation experiments show that the non-infectious conformer is unable to seed mouse PrPC substrates containing a glycosylphosphatidylinositol (GPI) anchor, including native PrPC. Taken together, these results indicate that having a conformation that can be specifically adopted by post-translationally modified PrPC molecules is an essential determinant of biological infectivity for recombinant prions, and suggest that this ability is associated with discrete features of PrPSc structure
A Structural and Functional Comparison Between Infectious and Non-Infectious Autocatalytic Recombinant PrP Conformers
Infectious prions contain a self-propagating, misfolded conformer of the prion protein termed PrPSc. A critical prediction of the protein-only hypothesis is that autocatalytic PrPSc molecules should be infectious. However, some autocatalytic recombinant PrPSc molecules have low or undetectable levels of specific infectivity in bioassays, and the essential determinants of recombinant prion infectivity remain obscure. To identify structural and functional features specifically associated with infectivity, we compared the properties of two autocatalytic recombinant PrP conformers derived from the same original template, which differ by \u3e105-fold in specific infectivity for wild-type mice. Structurally, hydrogen/deuterium exchange mass spectrometry (DXMS) studies revealed that solvent accessibility profiles of infectious and non-infectious autocatalytic recombinant PrP conformers are remarkably similar throughout their protease-resistant cores, except for two domains encompassing residues 91-115 and 144-163. Raman spectroscopy and immunoprecipitation studies confirm that these domains adopt distinct conformations within infectious versus non-infectious autocatalytic recombinant PrP conformers. Functionally, in vitro prion propagation experiments show that the non-infectious conformer is unable to seed mouse PrPC substrates containing a glycosylphosphatidylinositol (GPI) anchor, including native PrPC. Taken together, these results indicate that having a conformation that can be specifically adopted by post-translationally modified PrPC molecules is an essential determinant of biological infectivity for recombinant prions, and suggest that this ability is associated with discrete features of PrPSc structure
- …