62 research outputs found

    Rheotaxis in Larval Zebrafish Is Mediated by Lateral Line Mechanosensory Hair Cells

    Get PDF
    The lateral line sensory system, found in fish and amphibians, is used in prey detection, predator avoidance and schooling behavior. This system includes cell clusters, called superficial neuromasts, located on the surface of head and trunk of developing larvae. Mechanosensory hair cells in the center of each neuromast respond to disturbances in the water and convey information to the brain via the lateral line ganglia. The convenient location of mechanosensory hair cells on the body surface has made the lateral line a valuable system in which to study hair cell damage and regeneration. One way to measure hair cell survival and recovery is to assay behaviors that depend on their function. We built a system in which orientation against constant water flow, positive rheotaxis, can be quantitatively assessed. We found that zebrafish larvae perform positive rheotaxis and that, similar to adult fish, larvae use both visual and lateral line input to perform this behavior. Disruption or damage of hair cells in the absence of vision leads to a marked decrease in rheotaxis that recovers upon hair cell repair or regeneration

    Graph Theoretical Model of a Sensorimotor Connectome in Zebrafish

    Get PDF
    Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron) varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome

    THE SPECTRUM OF AMALRIC TRIANGULAR CHOROIDAL INFARCTION.

    No full text
    To describe the multimodal imaging findings, including optical coherence tomography angiography analysis, and spectrum of etiologies associated with Amalric triangular choroidal infarction. This study is a multicenter, retrospective, observational case series review of the clinical and multimodal imaging findings for six patients with Amalric triangular choroidal infarction. Six patients (10 eyes) with Amalric triangular choroidal infarction were enrolled. Patients' ages ranged from 7 years to 90 years (mean 54 years, median 60 years). Wedge-shaped or triangular areas of choroidal ischemia were evident with fluorescein angiography in all patients and with indocyanine green angiography in one patient. Optical coherence tomography angiography demonstrated choriocapillaris flow reduction that colocalized with outer retinal structural abnormalities with en face optical coherence tomography and corresponded with the triangular zones of choroidal infarction identified with fluorescein angiography in one patient. Etiologies included giant cell arteritis in three cases: traumatic carotid dissection, traumatic retrobulbar hemorrhage, and malignant hypertension secondary to lupus-associated nephropathy. The Amalric triangular syndrome of choroidal infarction can occur as a result of a spectrum of etiologies, especially giant cell arteritis. Infarction is evident on traditional angiography in all cases. Optical coherence tomography angiography may provide a simple noninvasive tool to evaluate choroidal ischemia

    Surgical Techniques for the Subretinal Delivery of Pediatric Gene Therapy

    No full text
    No widely accepted surgical technique for subretinal gene replacement therapy delivery in pediatric patients exists. We present alternative approaches in patients with inherited retinal diseases that aim to improve surgical success and minimize complications

    Activity-independent specification of synaptic targets in the posterior lateral line of the larval zebrafish

    No full text
    The development of functional neural circuits requires that connections between neurons be established in a precise manner. The mechanisms by which complex nervous systems perform this daunting task remain largely unknown. In the posterior lateral line of larval zebrafish, each afferent neuron forms synaptic contacts with hair cells of a common hair-bundle polarity. We investigated whether afferent neurons distinguish hair-cell polarities by analyzing differences in the synaptic signaling between oppositely polarized hair cells. By examining two mutant zebrafish lines with defects in mechanoelectrical transduction, and by blocking transduction during the development of wild-type fish, we found that afferent neurons could form specific synapses in the absence of stimulus-evoked patterns of synaptic release. Asking next whether this specificity arises through intrinsically generated patterns of synaptic release, we found that the polarity preference persisted in two mutant lines lacking essential synaptic proteins. These results indicate that lateral-line afferent neurons do not require synaptic activity to distinguish hair-cell polarities and suggest that molecular labels of hair-cell polarity guide prepatterned afferents to form the appropriate synapses

    The transmembrane inner ear (Tmie) protein is essential for normal hearing and balance in the zebrafish

    No full text
    Little is known about the proteins that mediate mechanoelectrical transduction, the process by which acoustic and accelerational stimuli are transformed by hair cells of the inner ear into electrical signals. In our search for molecules involved in mechanotransduction, we discovered a line of deaf and uncoordinated zebrafish with defective hair-cell function. The hair cells of mutant larvae fail to incorporate fluorophores that normally traverse the transduction channels and their ears lack microphonic potentials in response to vibratory stimuli. Hair cells in the posterior lateral lines of mutants contain numerous lysosomes and have short, disordered hair bundles. Their stereocilia lack two components of the transduction apparatus, tip links and insertional plaques. Positional cloning revealed an early frameshift mutation in tmie, the zebrafish ortholog of the mammalian gene transmembrane inner ear. The mutant line therefore affords us an opportunity to investigate the role of the corresponding protein in mechanoelectrical transduction

    Signal Peptide Variants in Inherited Retinal Diseases: A Multi-Institutional Case Series

    No full text
    Signal peptide (SP) mutations are an infrequent cause of inherited retinal diseases (IRDs). We report the genes currently associated with an IRD that possess an SP sequence and assess the prevalence of these variants in a multi-institutional retrospective review of clinical genetic testing records. The online databases, RetNet and UniProt, were used to determine which IRD genes possess a SP. A multicenter retrospective review was performed to retrieve cases of patients with a confirmed diagnosis of an IRD and a concurrent SP variant. In silico evaluations were performed with MutPred, MutationTaster, and the signal peptide prediction tool, SignalP 6.0. SignalP 6.0 was further used to determine the locations of the three SP regions in each gene: the N-terminal region, hydrophobic core, and C-terminal region. Fifty-six (56) genes currently associated with an IRD possess a SP sequence. Based on the records review, a total of 505 variants were present in the 56 SP-possessing genes. Six (1.18%) of these variants were within the SP sequence and likely associated with the patients’ disease based on in silico predictions and clinical correlation. These six SP variants were in the CRB1 (early-onset retinal dystrophy), NDP (familial exudative vitreoretinopathy) (FEVR), FZD4 (FEVR), EYS (retinitis pigmentosa), and RS1 (X-linked juvenile retinoschisis) genes. It is important to be aware of SP mutations as an exceedingly rare cause of IRDs. Future studies will help refine our understanding of their role in each disease process and assess therapeutic approaches

    Type 3 neovascularization: evolution, association with pigment epithelial detachment, and treatment response as revealed by spectral domain optical coherence tomography

    No full text
    PURPOSE: To demonstrate the evolution and treatment response of Type 3 neovascularization using spectral domain optical coherence tomography. METHODS: We retrospectively analyzed 40 eyes treated with intravitreal anti-vascular endothelial growth factor therapy for Type 3 neovascularization over a variable follow-up period. RESULTS: In 17 eyes, spectral domain optical coherence tomography captured the development of Type 3 neovascularization from punctate hyperreflective foci that preceded any outer retinal defect. The more mature Type 3 lesions were associated with outer retinal disruption and adjacent cystoid macular edema. In addition, 37 of 40 Type 3 lesions (93%) were associated with an underlying pigment epithelial detachment, of which 26 (70%) were drusenoid, 6 (16%) serous, and 5 (14%) mixed. Type 3 vessels appeared to leak fluid into the pigment epithelial detachment cavity, creating serous pigment epithelial detachments as large as 925 mum in maximal height. Treatment with anti-vascular endothelial growth factor agents led to prompt involution of the lesion and resorption of the intraretinal and subretinal pigment epithelium fluid after one or two injections (median = 1). CONCLUSION: In some eyes with age-related macular degeneration, the earliest sign of Type 3 neovascularization is punctate hyperreflective foci above the external limiting membrane. The mature Type 3 lesions and associated serous pigment epithelial detachments are highly responsive to anti-vascular endothelial growth factor therapy
    corecore