17 research outputs found

    Modeling of optical properties of hybrid metal-organic nanostructures

    Get PDF
    To model spectral characteristics of hybrid metal-organic nanostructures, the extended Mie theory was used, which makes it possible to calculate the extinction efficiency factor (Qext)Β and the scattering efficiency factor in the near zone (QNF) of two-layer spherical particles placed in an absorbing matrix. Two-layer plasmon nanospheres consisting of a metallic core (Ag, Cu) coated with dielectric shells and located into the copper phthalocyanine (CuPc) matrix were considered. The influence of dielectric shell thickness and refractive index on the characteristics of the surface plasmon resonance of absorption (SPRA) was studied. The possibility of the SPRA band tuning by changing the optical and geometrical parameters of dielectric shells was shown. It was established that dielectric shells allow to shift the surface plasmon resonance band of plasmonic Β nanoparticles absorption both Β to Β short- Β and Β long-wavelength Β spectral Β range Β depending on the relation between shell and matrix refractive indexes.To model spectral characteristics of hybrid metal-organic nanostructures, the extended Mie theory was used, which makes it possible to calculate the extinction efficiency factor (Qext)Β and the scattering efficiency factor in the near zone (QNF)Β ofΒ two-layerΒ sphericalΒ particlesΒ placedΒ inΒ anΒ absorbingΒ matrix.Β Two-layer plasmon nanospheres consisting of a metallic core (Ag, Cu) coated with dielectric shells and located into the copper phthalocyanine (CuPc) matrix were considered. The influence of dielectric shell thickness and refractive index on the characteristics of the surface plasmon resonance of absorption (SPRA) was studied. The possibility of the SPRA band tuning by changing the optical and geometrical parameters of dielectric shells was shown. It was established that dielectric shells allow to shift the surface plasmon resonance band of plasmonic Β nanoparticles absorption both Β to Β short- Β and Β long-wavelength Β spectral Β range Β depending on the relation between shell and matrix refractive indexes

    Modeling of optical properties of hybrid metal-organic nanostructures

    Get PDF
    To model spectral characteristics of hybrid metal-organic nanostructures, the extended Mie theory was used, which makes it possible to calculate the extinction efficiency factor (Qext) and the scattering efficiency factor in the near zone (QNF) of two-layer spherical particles placed in an absorbing matrix. Two-layer plasmon nanospheres consisting of a metallic core (Ag, Cu) coated with dielectric shells and located into the copper phthalocyanine (CuPc) matrix were considered. The influence of dielectric shell thickness and refractive index on the characteristics of the surface plasmon resonance of absorption (SPRA) was studied. The possibility of the SPRA band tuning by changing the optical and geometrical parameters of dielectric shells was shown. It was established that dielectric shells allow to shift the surface plasmon resonance band of plasmonic nanoparticles absorption both to short- and long-wavelength spectral range depending on the relation between shell and matrix refractive indexes

    ΠŸΠ›ΠΠ—ΠœΠžΠΠΠ«Π™ Π Π•Π—ΠžΠΠΠΠ‘ Π’ ΠŸΠ›ΠΠΠΠ ΠΠ«Π₯ Π‘Π›ΠžΠ˜Π‘Π’Π«Π₯ НАНОБВРУКВУРАΠ₯ Π‘Π•Π Π•Π‘Π Πž-Π€Π’ΠΠ›ΠžΠ¦Π˜ΠΠΠ˜Π ΠΠ˜ΠšΠ•Π›Π―1

    Get PDF
    Spectral properties of nickel phthalocyanine (NiPc) and silver (Ag) thin films, as well as of planar hybrid nanostructures composed of organic semiconductor nanometer films contacting with silver island structures were studied. All nanostructures were fabricated by thermal vacuum evaporation on glass and quartz substrates (S). Two configurations of planar hybrid nanostructures were investigated, in which the silver nanoparticle monolayer was placed under the NiPc film (S/Ag/NiPc) and over the NiPc film (S/NiPc/Ag). The NiPc film thickness was changed from 10 to 30 nm. The silver surface density was about 2β‹…10-6 g/cm2. The surface structure of films was studied with the use of a scanning probe microscope β€œSolver P47 - PRO” in the semi-contact regime. Optical spectra were recorded by a spectrophotomer β€œCary 500”. The most significant increasein the organic film absorption in a presence of Ag nanoparticles was observed for the NiPc film thickness of 10 nm over the spectral range of electronic absorption bands Ξ» ~ 600–700 nm. The effect is due to the local field strengthening near the plasmonic nanoparticles surface for distances compared with nanoparticle sizes. Quantitative regards showed that for the nanostructures of S/Ag/NiPc and S/NiPc/Ag the existence of Ag nanoparticles leads to an increase in the optical density at the wavelength Ξ» = 625 nm at 25 and 33 %, respectively. We suppose that the dependence of the NiPc film effective absorption on the hybrid nanostructure configuration may be related to the features of the nanostructure formation in the process of thermal evaporation.Π˜Π·ΡƒΡ‡Π΅Π½Ρ‹ ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ свойства Ρ‚ΠΎΠ½ΠΊΠΈΡ… ΠΏΠ»Π΅Π½ΠΎΠΊ Ρ„Ρ‚Π°Π»ΠΎΡ†ΠΈΠ°Π½ΠΈΠ½Π° никСля (NiPc) ΠΈ сСрСбра (Ag), ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… тСрмичСским осаТдСниСм Π² Π²Π°ΠΊΡƒΡƒΠΌΠ΅ Π½Π° стСклянныС ΠΈ ΠΊΠ²Π°Ρ€Ρ†Π΅Π²Ρ‹Π΅ ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΈ (П), Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹Ρ… Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹Ρ… наноструктур, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π½Π°Π½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΎΠ²Ρ‹Π΅ ΠΏΠ»Π΅Π½ΠΊΠΈ органичСского ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ° ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ΠΈΡ€ΡƒΡŽΡ‚ с островковыми структурами сСрСбра. Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ‹ Π΄Π²Π΅ ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΈ ΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹Ρ… Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹Ρ… наноструктур – монослой наночастиц сСрСбра ΠΏΠΎΠ΄ ΠΏΠ»Π΅Π½ΠΊΠΎΠΉ Ρ„Ρ‚Π°Π»ΠΎΡ†ΠΈΠ°Π½ΠΈΠ½Π° никСля (П/Ag/NiPc) ΠΈ монослой наночастиц сСрСбра Π½Π°Π΄ ΠΏΠ»Π΅Π½ΠΊΠΎΠΉ Ρ„Ρ‚Π°Π»ΠΎΡ†ΠΈΠ°Π½ΠΈΠ½Π° никСля(П/NiPc/Ag). Π’ΠΎΠ»Ρ‰ΠΈΠ½Π° ΠΏΠ»Π΅Π½ΠΎΠΊ NiPc измСнялась ΠΎΡ‚ 10 Π΄ΠΎ 30 Π½ΠΌ. ΠŸΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚Π½Π°Ρ ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ ΠΌΠ΅Ρ‚Π°Π»Π»Π° составляла ~ 2β‹…10–6 Π³/см2.. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΡΠΊΠ°Π½ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ Π·ΠΎΠ½Π΄ΠΎΠ²ΠΎΠ³ΠΎ микроскопа Solver P47-PRO Π² ΠΏΠΎΠ»ΡƒΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅ ΠΈΠ·ΡƒΡ‡Π΅Π½Π° структура исслСдуСмых наноструктур. ΠžΠΏΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ спСктры Π·Π°ΠΏΠΈΡΡ‹Π²Π°Π»ΠΈΡΡŒ Π½Π° спСктрофотомСтрС Cary 500. УстановлСно, Ρ‡Ρ‚ΠΎ присутствиС наночастиц Ag Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ усиливаСт эффСктивноС ΠΏΠΎΠ³Π»ΠΎΡ‰Π΅Π½ΠΈΠ΅ ΠΏΠ»Π΅Π½ΠΊΠΈ NiPc Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ ~ 10 Π½ΠΌ Π² области элСктронных полос поглощСния Ξ» ~ 600–700 Π½ΠΌ. Π”Π°Π½Π½Ρ‹ΠΉ эффСкт проявляСтся Π·Π° счСт способности ΠΏΠ»Π°Π·ΠΌΠΎΠ½Π½Ρ‹Ρ… наночастиц ΡƒΡΠΈΠ»ΠΈΠ²Π°Ρ‚ΡŒ локальноС ΠΏΠΎΠ»Π΅ Π²Π±Π»ΠΈΠ·ΠΈ своСй повСрхности Π½Π° расстояниях, сравнимых с Ρ€Π°Π·ΠΌΠ΅Ρ€Π°ΠΌΠΈ наночастиц. ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²Π΅Π½Π½Ρ‹Π΅ ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ наночастиц Ag ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ оптичСской плотности Π½Π° Π΄Π»ΠΈΠ½Π΅ Π²ΠΎΠ»Π½Ρ‹ Ξ» = 625 Π½ΠΌ для наноструктур П/Ag/NiPc ΠΈ П/NiPc/Ag соотвСтствСнно Π½Π° 25ΠΈ 33 %. ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ эффСктивного поглощСния ΠΏΠ»Π΅Π½ΠΊΠΈ NiPc ΠΎΡ‚ конструкции Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠΉ систСмы ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ связана с особСнностями формирования наноструктур Π² процСссС тСрмичСского осаТдСния

    ΠšΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΎΠ½Π½Π°Ρ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ полосы ΠΏΠ»Π°Π·ΠΌΠΎΠ½Π½ΠΎΠ³ΠΎ повСрхностного рСзонанса поглощСния наноструктур Π·ΠΎΠ»ΠΎΡ‚Π° Π² углСродсодСрТащих ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π°Ρ…

    Get PDF
    For fullerene matrixes doped by gold nanoparticles we have established experimentally a miss of a red concentration-induced shift of surface plasmon resonance absorption band maximum. Theoretical modeling has been made for spectral characteristics of carbon–bearing nanostructures. Numerical calculations of extinction factors for a spherical metallic particle in an absorbing surrounding medium were based on the Mie theory. Transmission spectra coefficients of densely packed plasmonic nanoparticles monolayers were calculated with the use of the single coherent scattering approximation modified for absorbing matrices. Thin-film Au-air and Au–C60 nanostructures have been fabricated on glass and quartz substrates by thermal evaporation and condensation in vacuum at an air pressure of 2 Β· 10–3 PΠ°. The surface mass density of Au into Au–C60 nanostructures was varied in the range (3.86–7.98) Β· 10–6 g/cm2. The comparison of theoretical and experimental data allowed making a conclusion that the absorbency in carbon-bearing matrix leads to the attenuation of lateral electrodynamics coupling and blocks collective plasmon resonance in densely packed gold nanostructures.Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ установлСно, Ρ‡Ρ‚ΠΎ для наноструктур Au–Б60 Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ ΠΏΠΎΠ΄Π°Π²Π»Π΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Π½ΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ сдвига максимума полосы ΠΏΠ»Π°Π·ΠΌΠΎΠ½Π½ΠΎΠ³ΠΎ повСрхностного рСзонанса поглощСния. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ тСорСтичСскоС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… характСристик углСродсодСрТащих наноструктур. РасчСты экстинкции для ΠΎΠ΄Π½ΠΎΠΉ мСталличСской наночастицы ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈΡΡŒ с использованиСм Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Ми для ΠΏΠΎΠ³Π»ΠΎΡ‰Π°ΡŽΡ‰ΠΈΡ… ΠΌΠ°Ρ‚Ρ€ΠΈΡ†. ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ ΠΊΠΎΠ³Π΅Ρ€Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ пропускания ΠΏΠ»ΠΎΡ‚Π½ΠΎΡƒΠΏΠ°ΠΊΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ монослоя ΠΏΠ»Π°Π·ΠΌΠΎΠ½Π½Ρ‹Ρ… наночастиц вычислялся с использованиСм ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ для ΠΏΠΎΠ³Π»ΠΎΡ‰Π°ΡŽΡ‰ΠΈΡ… ΠΌΠ°Ρ‚Ρ€ΠΈΡ† приблиТСния ΠΎΠ΄Π½ΠΎΠΊΡ€Π°Ρ‚Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ³Π΅Ρ€Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ рассСяния. Π’ΠΎΠ½ΠΊΠΎΠΏΠ»Π΅Π½ΠΎΡ‡Π½Ρ‹Π΅ наноструктуры Au ΠΈ Au–C60 Π½Π° ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ°Ρ… ΠΈΠ· стСкла ΠΈ ΠΊΠ²Π°Ρ€Ρ†Π° ΠΏΠΎΠ»ΡƒΡ‡Π°Π»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ тСрмичСского испарСния ΠΈ кондСнсации Π² Π²Π°ΠΊΡƒΡƒΠΌΠ΅ ΠΏΡ€ΠΈ остаточном Π΄Π°Π²Π»Π΅Π½ΠΈΠΈ Π²ΠΎΠ·Π΄ΡƒΡ…Π° 2Β·10–3 Па. ΠŸΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚Π½Π°Ρ ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ Au Π² наноструктурах Au–C60 измСнялась Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… (3,86–7,98)Β·10–6 г·см–2 . На основС сравнСния тСорСтичСских ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² сдСлан Π²Ρ‹Π²ΠΎΠ΄ ΠΎΠ± ослаблСнии ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Π»Π°Ρ‚Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… элСктродинамичСских взаимодСйствий ΠΌΠ΅ΠΆΠ΄Ρƒ наночастицами Π·ΠΎΠ»ΠΎΡ‚Π° Π² Ρ„ΡƒΠ»Π»Π΅Ρ€Π΅Π½ΠΎΠ²ΠΎΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ Π‘60, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰Π΅ΠΉΡΡ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ΠΌ поглощСния

    Π‘ΠŸΠ•ΠšΠ’Π ΠΠ›Π¬ΠΠž-Π’Π Π•ΠœΠ•ΠΠΠΠ― Π”Π˜ΠΠΠœΠ˜ΠšΠ ΠΠ•Π‘Π’ΠΠ¦Π˜ΠžΠΠΠ ΠΠžΠ“Πž ΠŸΠžΠ“Π›ΠžΠ©Π•ΠΠ˜Π― ΠœΠΠžΠ“ΠžΠ‘Π›ΠžΠ™ΠΠ«Π₯ ΠŸΠ•Π Π˜ΠžΠ”Π˜Π§Π•Π‘ΠšΠ˜Π₯ ΠŸΠ›ΠΠ—ΠœΠžΠΠΠ«Π₯ НАНОБВРУКВУР

    Get PDF
    The features of the induced changes in the optical density spectra of multilayer Ag-Na3 AlF6 nanostructures under a femtosecond laser pulses exitation in the band of surface plasmonic resonance of absorption (SPRA) were studied. The dependence of the amplitude of the induced changes on the thickness of the dielectric Na3 AlF6 films separating the monolayeres of silver nanoparticles was registered. A significant increase of the optical response amplitude (up to 80 %) was found for the nanostructures with the quarter-wavelength Na3 AlF6 interlayers. For nanostructures with different-thickness dielectric Na3 AlF6 interlayers the characteristic relaxation times of induced changes at an excitation energy of 5–10 ΞΌJ do not practically vary, are equal to ~2 ps and coincide with the kinetic response time parameters of the used silver nanoparticle monolayers.Β Π˜Π·ΡƒΡ‡Π΅Π½Ρ‹ особСнности Π½Π°Π²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π² спСктрах оптичСской плотности многослойных наноструктур Ag-Na3 AlF6 ΠΏΡ€ΠΈ ΠΈΡ… Π²ΠΎΠ·Π±ΡƒΠΆΠ΄Π΅Π½ΠΈΠΈ фСмтосСкундными Π»Π°Π·Π΅Ρ€Π½Ρ‹ΠΌΠΈ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ°ΠΌΠΈ Π² полосС ΠΏΠ»Π°Π·ΠΌΠΎΠ½Π½ΠΎΠ³ΠΎ повСрхностного рСзонанса поглощСния (ППРП). ЗарСгистрирована Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Ρ‹ Π½Π°Π²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π² области ППРП ΠΎΡ‚ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ диэлСктричСских ΠΏΠ»Π΅Π½ΠΎΠΊ Na3 AlF6 , Ρ€Π°Π·Π΄Π΅Π»ΡΡŽΡ‰ΠΈΡ… монослои наночастиц сСрСбра. ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ сущСствСнноС ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Ρ‹ оптичСского ΠΎΡ‚ΠΊΠ»ΠΈΠΊΠ° (Π΄ΠΎ 80 %) для наноструктуры с Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΡŒΠ²ΠΎΠ»Π½ΠΎΠ²Ρ‹ΠΌΠΈ прослойками Na3 AlF6 . Π₯арактСристичСскиС Π²Ρ€Π΅ΠΌΠ΅Π½Π° рСлаксации Π½Π°Π²ΠΎΠ΄ΠΈΠΌΡ‹Ρ… ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ ΠΏΡ€ΠΈ энСргиях возбуТдСния 5–10 ΠΌΠΊΠ”ΠΆ для наноструктур с Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ диэлСктричСских прослоСк Na3 AlF6 практичСски Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ, ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ ~2 пс ΠΈ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚ с Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ кинСтичСского ΠΎΡ‚ΠΊΠ»ΠΈΠΊΠ°, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ΠΌΠΈ для ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠΎΠ³ΠΎ монослоя наночастиц Ag.
    corecore