28,297 research outputs found

    Maternal cell-free DNA-based screening for fetal microdeletion and the importance of careful diagnostic follow-up.

    Get PDF
    BackgroundNoninvasive prenatal screening (NIPS) by next-generation sequencing of cell-free DNA (cfDNA) in maternal plasma is used to screen for common aneuploidies such as trisomy 21 in high risk pregnancies. NIPS can identify fetal genomic microdeletions; however, sensitivity and specificity have not been systematically evaluated. Commercial companies have begun to offer expanded panels including screening for common microdeletion syndromes such as 22q11.2 deletion (DiGeorge syndrome) without reporting the genomic coordinates or whether the deletion is maternal or fetal. Here we describe a phenotypically normal mother and fetus who tested positive for atypical 22q deletion via maternal plasma cfDNA testing.MethodsWe performed cfDNA sequencing on saved maternal plasma obtained at 11 weeks of gestation from a phenotypically normal woman with a singleton pregnancy whose earlier screening at a commercial laboratory was reported to be positive for a 22q11.2 microdeletion. Fluorescence in situ hybridization and chromosomal microarray diagnostic genetic tests were done postnatally.ConclusionNIPS detected a 22q microdeletion that, upon diagnostic workup, did not include the DiGeorge critical region. Diagnostic prenatal or postnatal testing with chromosomal microarray and appropriate parental studies to determine precise genomic coordinates and inheritance should follow a positive microdeletion NIPS result

    Plasma-Like Negative Capacitance in Nano-Colloids

    Full text link
    A negative capacitance has been observed in a nano-colloid between 0.1 and 10^-5 Hz. The response is linear over a broad range of conditions. The low-omega dispersions of both the resistance and capacitance are consistent with the free-carrier plasma model, while the transient behavior demonstrates an unusual energy storage mechanism. A collective excitation, therefore, is suggested.Comment: 3 pages, 3 figure

    Identification of the dominant diffusing species in silicide formation

    Get PDF
    Implanted noble gas atoms of Xe have been used as diffusion markers in the growth study of three silicides: Ni2Si, VSi2, and TiSi2. Backscattering of MeV He has been used to determine the displacement of the markers. We found that while Si atoms predominate the diffusion in VSi2 and TiSi2, Ni atoms are the faster moving species in Ni2Si

    Right for the Right Reason: Training Agnostic Networks

    Get PDF
    We consider the problem of a neural network being requested to classify images (or other inputs) without making implicit use of a "protected concept", that is a concept that should not play any role in the decision of the network. Typically these concepts include information such as gender or race, or other contextual information such as image backgrounds that might be implicitly reflected in unknown correlations with other variables, making it insufficient to simply remove them from the input features. In other words, making accurate predictions is not good enough if those predictions rely on information that should not be used: predictive performance is not the only important metric for learning systems. We apply a method developed in the context of domain adaptation to address this problem of "being right for the right reason", where we request a classifier to make a decision in a way that is entirely 'agnostic' to a given protected concept (e.g. gender, race, background etc.), even if this could be implicitly reflected in other attributes via unknown correlations. After defining the concept of an 'agnostic model', we demonstrate how the Domain-Adversarial Neural Network can remove unwanted information from a model using a gradient reversal layer.Comment: Author's original versio

    Methods of tropical optimization in rating alternatives based on pairwise comparisons

    Full text link
    We apply methods of tropical optimization to handle problems of rating alternatives on the basis of the log-Chebyshev approximation of pairwise comparison matrices. We derive a direct solution in a closed form, and investigate the obtained solution when it is not unique. Provided the approximation problem yields a set of score vectors, rather than a unique (up to a constant factor) one, we find those vectors in the set, which least and most differentiate between the alternatives with the highest and lowest scores, and thus can be representative of the entire solution.Comment: 9 pages, presented at the Annual Intern. Conf. of the German Operations Research Society (GOR), Helmut Schmidt University Hamburg, Germany, August 30 - September 2, 201
    corecore