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Abstract. We consider the problem of a neural network being requested
to classify images (or other inputs) without making implicit use of a
“protected concept”, that is a concept that should not play any role in
the decision of the network. Typically these concepts include information
such as gender or race, or other contextual information such as image
backgrounds that might be implicitly reflected in unknown correlations
with other variables, making it insufficient to simply remove them from
the input features. In other words, making accurate predictions is not
good enough if those predictions rely on information that should not
be used: predictive performance is not the only important metric for
learning systems. We apply a method developed in the context of domain
adaptation to address this problem of “being right for the right reason”,
where we request a classifier to make a decision in a way that is entirely
‘agnostic’ to a given protected concept (e.g. gender, race, background
etc.), even if this could be implicitly reflected in other attributes via
unknown correlations. After defining the concept of an ‘agnostic model’,
we demonstrate how the Domain-Adversarial Neural Network can remove
unwanted information from a model using a gradient reversal layer.

Keywords: Agnostic models, Explainable AI, Fairness in AI, Trust

1 Introduction

Data-driven Artificial Intelligence (AI) is behind the new generation of success
stories in the field, and is predicated not just on a few technological break-
throughs, but on a cultural shift amongst its practitioners: namely the belief
that predictions are more important than explanations, and that correlations
count more than causations [4, 8]. Powerful black-box algorithms have been de-
veloped to sift through data and detect any possible correlation between inputs
and intended outputs, exploiting anything that can increase predictive perfor-
mance. Computer vision (CV) is one of the fields that has benefited the most
from this choice, and therefore can serve as a test bed for more general ideas in
AI.

This paper targets the important problem of ensuring trust in AI systems.
Consider a case as simple as object classification. It is true that exploiting con-
textual clues can be beneficial in CV and generally in AI tasks. After all, if an
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algorithm thinks it is seeing an elephant (the object) in a telephone box (the
context), or Mickey Mouse driving a Ferrari, it is probably wrong. This illus-
trates that even though your classifier might have an opinion about the objects
in an image, the context around it can be used to improve your performance
(e.g. telling you that it is unlikely to be an elephant inside a telephone box), as
shown in many recent works [3, 13, 14].

However, making predictions based on context can also lead to problems and
creates various concerns, one of which is the use of classifiers in “out of domain”
situations, a problem that leads to research questions in domain adaptation [6,
18]. Other concerns are also created around issues of bias, e.g. classifiers incor-
porating biases that are present in the data and are not intended to be used [2],
which run the risk of reinforcing or amplifying cultural (and other) biases [20].
Therefore, both predictive accuracy and fairness are heavily influenced by the
choices made when developing black-box machine-learning models.

Since the limiting factor in training models is often sourcing labelled data,
a common choice is to resort to reusing existing data for a new purpose, such
as using web queries to generate training data, and employing various strategies
to annotate labels, i.e. using proxy signals that are expected to be somewhat
correlated to the intended target concept [5, 11]. These methods come with no
guarantees of being unbiased, or even to reflect the deployment conditions nec-
essarily, with any data collected “in the wild” [8, 10] carrying with it the biases
that come from the wild.

To address these issues, a shift in thinking is needed, from the aforemen-
tioned belief that predictions are more important than explanations, to ideally
developing models that make predictions that are right for the right reason,
and consider other metrics, such as fairness, transparency and trustworthiness,
as equally important as predictive performance. This means that we want to
ensure that certain protected concepts are not used as part of making critical
decisions (e.g. decisions about jobs should not be based on gender or race) for
example, or that similarly, predictions about objects in an image should not be
based on contextual information (gender of a subject in an image should not be
based on the background).

In this direction, we demonstrate how the Domain-Adversarial Neural Net-
work (DANN) developed in the context of domain adaptation [6] can be modified
to generate ‘agnostic’ feature representations that do not incorporate any im-
plicit contextual (correlated) information that we do not want, and is therefore
unbiased and fair. We note that this is a far stronger requirement than sim-
ply removing protected features from the input that might otherwise implicitly
remain in the model due to unforeseen correlations with other features.

We present a series of experiments, showing how the relevant pixels used
to make a decision move from the contextual information to the relevant parts
of the image. This addresses the problem of relying on contextual information,
exemplified by the Husky/Wolf problem in [15], but more importantly shows a
way to de-bias classifiers in the feature engineering step, allowing it to be applied
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generally for different models, whether that is word embeddings, support vector
machines, or deep networks etc.

Ultimately, this ties into the current debate about how to build trust in these
tools, whether this is about their predictive performance, their being right for
the right reason, their being fair, or their decisions being explainable.

2 Agnostic Models

Methods have previously been proposed to remove biases, based on various prin-
ciples, one of which is distribution matching [20]: ensuring that the ratio between
protected attributes is the same in the training instances and in the testing in-
stances. However, this does not avoid using the wrong reasons in assessing an
input but simply enforces a post-hoc rescaling of scores, to ensure that the out-
come matches the desired statistical requirements of fairness.

In our case, we do not want to have an output distribution that only looks as
if it has been done without using protected concepts. We actually want a model
that cannot even represent them within its internal representations, where we
call such a model agnostic. This is a model that does not represent a protected
concept internally, and therefore cannot use it even indirectly. Of course this
kind of constraint is likely to lead to lower accuracy. However, we should keep
in mind that this reduction in accuracy is a direct result of no longer using
contextual clues and correlations that we explicitly wish to prevent.

In this direction, we consider classification tasks where X is the input space
and Y = {0, 1, . . . , L − 1} is the set of L possible labels. An agnostic model
(or feature representation) Gf : X → RD, parameterized by θf , maps a data
example (xi,yi) into a new D-dimensional feature representation z ∈ RD such
that for a given label p ∈ Y , there does not exist an algorithm Gy : RD → [0, 1]L

which can predict p with better than random performance.

3 Domain-Adversarial Neural Networks

One possible way to learn an agnostic model is to use a DANN [6], recently
proposed for domain adaptation, which explicitly implements the idea raised in
[1] of learning a representation that is unable to distinguish between training
and test domains. In our case, we wish for the model to be able to learn a
representation that is agnostic to a protected concept.

DANNs are a type of Convolutional Neural Network (CNN) that can achieve
an agnostic representation using three components. A feature extractor Gf (·; θf ),
a label prediction output layer Gy(·; θy) and an additional protected concept
prediction layer Gp : RD → [0, 1], parameterized by θp. During training, two
different losses are then computed: a target prediction loss for the i-th data
instance Liy(θf , θy) = Ly(Gy(Gf (xi; θf ); θy),yi) and a protected concept loss

Lip(θf , θp) = Lp(Gp(Gf (xi; θf ); θp), pi), where Ly and Lp are both given by the
cross-entropy loss and pi is the label denoting the protected concept we wish to
be unable to distinguish using the learnt representation.
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Training the network then attempts to optimise

E(θf , θy, θp) = (1− α)
1

n

n∑
i=1

Liy(θf , θy)− α

(
1

n

n∑
i=1

Lip(θf , θp) +
1

n′

N∑
i=n+1

Lip(θf , θp)

)
,

(1)

where n′ = N − n and α is the hyper-parameter for the trade-off between the
two losses, finding the saddle point θ̂f , θ̂y, θ̂p such that

(θ̂f , θ̂y) = argmin
θf ,θy

E(θf , θy, θ̂p), (2)

θ̂p = argmax
θp

E(θ̂f , θ̂y, θp). (3)

As further detailed in [6], introducing a gradient reversal layer (GRL) be-
tween the feature extractor Gf and the protected concept classifier Gp allows
(1) to be framed as a standard stochastic gradient descent (SGD) procedure as
commonly implemented in most deep learning libraries.

The network can therefore be learnt using a simple stochastic gradient pro-
cedure, where updates to θf are made in the opposite direction of the gradient
for the maximizing parameters, and in the direction of the gradient for the min-
imizing parameters. Stochastic estimates of the gradient are made, both for the
target concept and for the protected concept, using the training set. We can see
this as the two parts of the neural network (target classifier Gy and protected
concept classifier Gp) are competing with each other for the control of the in-
ternal representation. DANN will attempt to learn a model Gf that maps an
example into a representation allowing the target classifier to accurately classify
instances, but crippling the ability of the protected concept classifier to discrim-
inate inputs by their label for the protected concept.

4 Experiments

To test the use of DANNs for learning representations that can be used to
make predictions for the right reasons, we ran two different experiments. In
Experiment 1, we first demonstrate the issue of using contextual information to
make predictions in a cross-domain classification task, before using a DANN in
Experiment 2, showing that the network can learn an agnostic representation
that allows us to make predictions on a target concept without using information
from a correlated contextual concept (the protected concept in this case), such
as the image background.

4.1 Data Description

In this work, we combine two datasets, making use of the ‘Jaguar’ and ‘Killer
whale’ categories from the ImageNet dataset [16], as well as the ‘Forest path’
and ‘Coast’ categories from the Places dataset [21].
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Fig. 1. Example images taken from the ‘Jaguar’, ‘Killer whale’, ‘Forest path’ and
‘Coast’ categories of the ImageNet and Places datasets respectively (left-right).

A two-part training set was constructed containing 2,524 images from the
‘Jaguar’ category, and the same number for the ‘Killer whale’ category from
ImageNet (the target concept training set). This was further supplemented with
5,000 images from each of the two categories (‘Forest path’ and ‘Coast’) from the
Places dataset (the contextual concept training set), for a total of 15,048 images
in the combined training set. Two separate hold-out sets were also created, one
for the target concept containing 50 hold-out images from each of the ‘Jaguar’
and ‘Killer whale’ categories, and one for the contextual concept containing 50
hold-out images from each of the ‘Forest path’ and ‘Coast’ categories.

Data augmentation was performed on the training set to increase the number
of instances by creating new images that are multi-crops of 224 × 224 pixels
and horizontally flipping copies of the training set images. All images in our
experiments were also pre-processed to be 256×256 pixels by a process of multi-
cropping where each image is resized before cropping the final size from the
centre region, as in [9, 12]. Example images from the training set used for the
experiments can be seen in Fig. 1.

4.2 Network structure

The network structure used for our experiments in this paper are based upon a
simplified version of the VGG-net CNN used in [17], where the feature extraction
layers Gf consist of five convolutional layers: conv3-641, conv3-128, conv3-256,
conv3-512 and conv3-512, with ReLU activation and max-pooling layers inserted
after each convolutional layer. The output prediction classifiers Gy and Gp are
each composed of four fully connected layers, fc-1024, with ReLU and dropout
layers with a dropout of 0.5 after each fully connected layer.

1 conva-b denotes a convolutional layer consisting of b filters of size a× a.
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Fig. 2. Results from Experiment 1, showing that a standard CNN model trained on
the target concept will also learn how to classify in the contextual concept and vice
versa.

4.3 Experiment 1: Cross-domain classification

In this first experiment, we motivate our approach by demonstrating the problem
we wish to address, namely that contextual information can be used to make
classification decisions about our target concept that is not related to the target
that we actually wish to learn.

We began by training from scratch two independent CNNs with the same
network architecture, one on the target concept training set and one on con-
textual concept training set. The layers of the network are described in Sec 4.2
with a single output prediction classifer Gy per model, i.e. each CNN is com-
posed of five convolution layers, followed by four fully connected layers with no
shared features across the models. Each model was trained for 10 epochs using
the following model parameters: a batch size of 32, a starting learning rate of
η = 0.01 that decays every three epochs by a factor of 10, a momentum of 0.5
and a weight decay of 5e−4.

The accuracy of each model was measured on both the target and contextual
test sets after each epoch as shown in Fig. 2. As one might expect, we can see
that the model trained on the target concept achieves an accuracy of 92% on
the target test set, while the contextual concept model achieves an accuracy of
91% on the contextual test set. More problematically, we can see that the target
concept model, trained only on images of animals, also has good performance
at classifying images of forest paths and coastlines from the contextual test set,
with an accuracy of 79%. Similarly, the contextual concept model, trained only
on images of forest paths and coastlines can correctly identify animals with an
accuracy of 88%.
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Fig. 3. Accuracy of the two independent classifiers in the DANN using the shared
feature space on the test sets for different values of α.

4.4 Experiment 2: Learning with Domain-adversarial neural
networks

In this next experiment, we show that with our proposed use of DANNs max-
imises its performance on the target concept whilst following the constraint that
it should not learn useful features for the protected contextual concept. We
further examine the most informative pixels (e.g. those pixels which have the
strongest response in the feature map) used for classification [7, 19], showing that
the most informative pixels are no longer found in the image background.

Keeping all the model parameters, apart from a new learning rate (η =
0.001), the same as in Experiment 1, we trained a single DANN model on the
combined training set, with the network layers outlined in Sec 4.2, with the target
prediction output layers Gy predicting the target concept, and the protected
concept prediction layers predicting the contextual concept. By doing so, we force
the model to learn a shared data representation (feature space) that maximises
performance on the target while incorporating no knowledge of features which are
useful for classifying the contextual concept images. This process was repeated
for different gradient trade-offs in the range α = [0, 0.1, . . . , 1] using a grid-search
procedure, where α = 0 represents simply training the shared feature space on
the target concept, and α = 1 represents training the shared feature space to
maximise the loss for the contextual concept. We repeated this process 10 times,
reporting the average accuracy for each run, along with the standard deviation.

In Fig. 3, we can see the accuracy of the DANN for varying gradient trade-
off values on the target and contextual concept test sets. Our results show that
as α increases and is further constrained in its use of information from the
contextual concept, the performance on the target concept decreases, suggesting
that the performance on the intended target concept was indeed being helped
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(a) Activation maps for the ‘Killer whale’
category

(b) Activation maps for the ‘Jaguar’ cat-
egory

Fig. 4. Activation maps based on the strongest response of the shared feature represen-
tation. Examples selected are those with the least correlation between the activation
maps for α = 0 and α = 0.8 as shown in the images.

by the contextual background information. Our results show that once we have
removed features which are useful for predicting the contextual concept, our
target classifier achieves an accuracy of 64%, while the contextual classifier can
only maintain an accuracy close to random guessing.

We further investigated whether after applying the minimax procedure of
the DANN that the most informative pixels for prediction corresponded with
the location of the target concept in the image, or whether they were focused on
the background scene of the image. Fig. 4 shows activation maps for the feature
representation shared between the independent classifiers on a set of three images
for each target concept category. Examples were selected as those with the least
correlation between the activation maps for the contrasting α values of 0 and
0.8 shown, where α values were chosen as the two extremes in the classification
accuracy.

We can observe that for the ‘Killer whale’ category, the most informative
pixels for α = 0 are indeed found in the background of the image, while for
α = 0.8 the activation maps show that the network is focusing on the actual body
of the animal instead, as desired. For the ‘Jaguar’ category, analysis of the most
informative pixels is less clear, with activation generally being spread widely
across the image. However, we do see some evidence of a stronger activation
response to parts of the jaguar’s body overall.
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5 Discussion

In our experiments, we found that as the model learns the shared features with in-
creasingly less contextual information, accuracy of the target classifier decreases.
This is exactly what we expect and directly addresses our main argument, that
previously the classifier was relying on the protected contextual background in-
formation that should not be used to make its predictions.

At one extreme, where α = 1, the network is using no information from the
target concept in its data representation, instead trying to maximise its loss
on the protected concept in the shared feature space Gf , while minimising its
loss in the protected classifier Gp. This tension between the two parts of the
network leads to a minimax scenario where if there is any information which
can be exploited to correctly predict in the protected concept, it is subsequently
removed from the data representation.

We note that ideally α should be set to 1 for similar experiments, given
that for any other setting the learning system would still be exploiting forbidden
information from the protected concept, and would not be satisfying the original
requirements of the task: to learn to predict without the contextual information.
However, since in this scenario the shared feature space would not rely on the
target domain at all, α needs to be slowly increased as training progresses until
reaching its maximum. In this way, the features will be guided by the target
domain as well, forming a saddle point in the exploration of the feature space as
required.

Results from investigating the most informative pixels for classification at
differing levels of α revealed that the constraint of the contextual concept appears
to have been more successful for the ‘Killer whale’ and ‘Coast’ images than for
the ‘Jaguar’ and ‘Forest path’ pairing. This can perhaps be best explained by how
closely the contextual concept training images represent the contextual concept
found in the target concept training images, i.e. the whales are always pictured
next to or in the ocean, whereas jaguars will sometimes be found outside of the
jungle with different backgrounds, and therefore the ‘Forest path’ category does
not match ‘Jaguar’ backgrounds as closely as ‘Coast’ does for the ‘Killer whale’
category.

Further theoretical and experimental analysis of additional minimax archi-
tectures is needed to explain the phenomena of the target classifier accuracy
increasing on both target and contextual test sets for values of α ≥ 0.8.

6 Conclusions

The creation of a new generation of AI systems that can be trusted to make fair
and unbiased decisions is an urgent task for researchers. As AI rapidly conquers
technical challenges related to predictive performance, we are discovering a new
dimension to the design of such systems that must be addressed: the fairness
and trust in the system’s decisions.

In this paper, we address this critical issue of trust in AI by not only proposing
a new high standard for models to meet, being agnostic to a protected concept,
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but also proposing a method to achieve such models. We define a model to be
agnostic with respect to a set of concepts if we can show that it makes its de-
cisions without ever using these concepts. This is a much stronger requirement
than in distributional matching or other definitions of fairness. We focus on the
case where a small set of protected concepts should not be used in decisions, and
can be exemplified by samples of data. We have demonstrated how ideas devel-
oped in the context of domain adaptation can deliver agnostic representations
that are important to ensure fairness and therefore trust.

Our experiments demonstrate that the DANN successfully removes unwanted
contextual information, and makes decisions for the right reasons. While demon-
strated here by ignoring the physical background context of an object in an im-
age, the same approach can be used to ensure that other protected information
does not make its way into black-box classifiers deployed to make decisions about
people in other domains and classification tasks.
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