9 research outputs found
A simplified (modified) Duke Activity Status Index (M-DASI) to characterise functional capacity: A secondary analysis of the Measurement of Exercise Tolerance before Surgery (METS) study
Background
Accurate assessment of functional capacity, a predictor of postoperative morbidity and mortality, is essential to improving surgical planning and outcomes. We assessed if all 12 items of the Duke Activity Status Index (DASI) were equally important in reflecting exercise capacity.
Methods
In this secondary cross-sectional analysis of the international, multicentre Measurement of Exercise Tolerance before Surgery (METS) study, we assessed cardiopulmonary exercise testing and DASI data from 1455 participants. Multivariable regression analyses were used to revise the DASI model in predicting an anaerobic threshold (AT) >11 ml kg −1 min −1 and peak oxygen consumption (VO 2 peak) >16 ml kg −1 min −1, cut-points that represent a reduced risk of postoperative complications.
Results
Five questions were identified to have dominance in predicting AT>11 ml kg −1 min −1 and VO 2 peak>16 ml.kg −1min −1. These items were included in the M-DASI-5Q and retained utility in predicting AT>11 ml.kg −1.min −1 (area under the receiver-operating-characteristic [AUROC]-AT: M-DASI-5Q=0.67 vs original 12-question DASI=0.66) and VO 2 peak (AUROC-VO2 peak: M-DASI-5Q 0.73 vs original 12-question DASI 0.71). Conversely, in a sensitivity analysis we removed one potentially sensitive question related to the ability to have sexual relations, and the ability of the remaining four questions (M-DASI-4Q) to predict an adequate functional threshold remained no worse than the original 12-question DASI model. Adding a dynamic component to the M-DASI-4Q by assessing the chronotropic response to exercise improved its ability to discriminate between those with VO 2 peak>16 ml.kg −1.min −1 and VO 2 peak<16 ml.kg −1.min −1.
Conclusions
The M-DASI provides a simple screening tool for further preoperative evaluation, including with cardiopulmonary exercise testing, to guide perioperative management
Integration of the Duke Activity Status Index into preoperative risk evaluation: a multicentre prospective cohort study.
BACKGROUND: The Duke Activity Status Index (DASI) questionnaire might help incorporate self-reported functional capacity into preoperative risk assessment. Nonetheless, prognostically important thresholds in DASI scores remain unclear. We conducted a nested cohort analysis of the Measurement of Exercise Tolerance before Surgery (METS) study to characterise the association of preoperative DASI scores with postoperative death or complications. METHODS: The analysis included 1546 participants (≥40 yr of age) at an elevated cardiac risk who had inpatient noncardiac surgery. The primary outcome was 30-day death or myocardial injury. The secondary outcomes were 30-day death or myocardial infarction, in-hospital moderate-to-severe complications, and 1 yr death or new disability. Multivariable logistic regression modelling was used to characterise the adjusted association of preoperative DASI scores with outcomes. RESULTS: The DASI score had non-linear associations with outcomes. Self-reported functional capacity better than a DASI score of 34 was associated with reduced odds of 30-day death or myocardial injury (odds ratio: 0.97 per 1 point increase above 34; 95% confidence interval [CI]: 0.96-0.99) and 1 yr death or new disability (odds ratio: 0.96 per 1 point increase above 34; 95% CI: 0.92-0.99). Self-reported functional capacity worse than a DASI score of 34 was associated with increased odds of 30-day death or myocardial infarction (odds ratio: 1.05 per 1 point decrease below 34; 95% CI: 1.00-1.09), and moderate-to-severe complications (odds ratio: 1.03 per 1 point decrease below 34; 95% CI: 1.01-1.05). CONCLUSIONS: A DASI score of 34 represents a threshold for identifying patients at risk for myocardial injury, myocardial infarction, moderate-to-severe complications, and new disability
Using the 6-minute walk test to predict disability-free survival after major surgery
Background: The 6-min walk test (6MWT) is a common means of functional assessment. Its relationship to disability-free survival (DFS) is uncertain. Methods: This sub-study of the Measurement of Exercise Tolerance for Surgery study had co-primary outcome measures: correlation of the preoperative 6MWT distance with 30 day quality of recovery (15-item quality of recovery) and 12 month WHO Disability Assessment Schedule scores. The prognostic utility of the 6MWT and other risk assessment tools for 12 month DFS was assessed with logistic regression and receiver-operating-characteristic-curve analysis. Results: Of 574 patients recruited, 567 (99%) completed the 6MWT. Twelve months after surgery, 16 (2.9%) patients had died and 444 (77%) had DFS. The 6MWT correlated weakly with 30 day 15-item quality of recovery (ρ=0.14; P=0.001) and 12 month WHO Disability Assessment Schedule (ρ=–0.23;
Association of preoperative anaemia with cardiopulmonary exercise capacity and postoperative outcomes in noncardiac surgery: a substudy of the Measurement of Exercise Tolerance before Surgery (METS) Study.
BACKGROUND: Preoperative anaemia is associated with elevated risks of postoperative complications. This association may be explained by confounding related to poor cardiopulmonary fitness. We conducted a pre-specified substudy of the Measurement of Exercise Tolerance before Surgery (METS) study to examine the associations of preoperative haemoglobin concentration with preoperative cardiopulmonary exercise testing performance (peak oxygen consumption, anaerobic threshold) and postoperative complications. METHODS: The substudy included a nested cross-sectional analysis and nested cohort analysis. In the cross-sectional study (1279 participants), multivariate linear regression modelling was used to determine the adjusted association of haemoglobin concentration with peak oxygen consumption and anaerobic threshold. In the nested cohort study (1256 participants), multivariable logistic regression modelling was used to determine the adjusted association of haemoglobin concentration, peak oxygen consumption, and anaerobic threshold with the primary endpoint (composite outcome of death, cardiovascular complications, acute kidney injury, or surgical site infection) and secondary endpoint (moderate or severe complications). RESULTS: Haemoglobin concentration explained 3.8% of the variation in peak oxygen consumption and anaerobic threshold (P<0.001). Although not associated with the primary endpoint, haemoglobin concentration was associated with moderate or severe complications after adjustment for peak oxygen consumption (odds ratio=0.86 per 10 g L-1 increase; 95% confidence interval, 0.77-0.96) or anaerobic threshold (odds ratio=0.86; 95% confidence interval, 0.77-0.97). Lower peak oxygen consumption was associated with moderate or severe complications without effect modification by haemoglobin concentration (P=0.12). CONCLUSION: Haemoglobin concentration explains a small proportion of variation in exercise capacity. Both anaemia and poor functional capacity are associated with postoperative complications and may therefore be modifiable targets for preoperative optimisation.Canadian Institutes of Health ResearchHeart and Stroke Foundation of CanadaOntario Ministry of Health and Long-Term CareOntario Ministry of Research, Innovation and ScienceUnited Kingdom (UK) National Institute of Academic AnaesthesiaUK Clinical Research CollaborationAustralian and New Zealand College of AnaesthetistsMonash University (Melbourne, Victoria, Australia
A simplified (modified) Duke Activity Status Index (M-DASI) to characterise functional capacity: a secondary analysis of the Measurement of Exercise Tolerance before Surgery (METS) study.
BACKGROUND: Accurate assessment of functional capacity, a predictor of postoperative morbidity and mortality, is essential to improving surgical planning and outcomes. We assessed if all 12 items of the Duke Activity Status Index (DASI) were equally important in reflecting exercise capacity. METHODS: In this secondary cross-sectional analysis of the international, multicentre Measurement of Exercise Tolerance before Surgery (METS) study, we assessed cardiopulmonary exercise testing and DASI data from 1455 participants. Multivariable regression analyses were used to revise the DASI model in predicting an anaerobic threshold (AT) >11 ml kg-1 min-1 and peak oxygen consumption (VO2 peak) >16 ml kg-1 min-1, cut-points that represent a reduced risk of postoperative complications. RESULTS: Five questions were identified to have dominance in predicting AT>11 ml kg-1 min-1 and VO2 peak>16 ml.kg-1min-1. These items were included in the M-DASI-5Q and retained utility in predicting AT>11 ml.kg-1.min-1 (area under the receiver-operating-characteristic [AUROC]-AT: M-DASI-5Q=0.67 vs original 12-question DASI=0.66) and VO2 peak (AUROC-VO2 peak: M-DASI-5Q 0.73 vs original 12-question DASI 0.71). Conversely, in a sensitivity analysis we removed one potentially sensitive question related to the ability to have sexual relations, and the ability of the remaining four questions (M-DASI-4Q) to predict an adequate functional threshold remained no worse than the original 12-question DASI model. Adding a dynamic component to the M-DASI-4Q by assessing the chronotropic response to exercise improved its ability to discriminate between those with VO2 peak>16 ml.kg-1.min-1 and VO2 peak<16 ml.kg-1.min-1. CONCLUSIONS: The M-DASI provides a simple screening tool for further preoperative evaluation, including with cardiopulmonary exercise testing, to guide perioperative management
Heart rate recovery and morbidity after noncardiac surgery: Planned secondary analysis of two prospective, multi-centre, blinded observational studies
BackgroundImpaired cardiac vagal function, quantified preoperatively as slower heart rate recovery (HRR) after exercise, is independently associated with perioperative myocardial injury. Parasympathetic (vagal) dysfunction may also promote (extra-cardiac) multi-organ dysfunction, although perioperative data are lacking. Assuming that cardiac vagal activity, and therefore heart rate recovery response, is a marker of brainstem parasympathetic dysfunction, we hypothesized that impaired HRR would be associated with a higher incidence of morbidity after noncardiac surgery.MethodsIn two prospective, blinded, observational cohort studies, we established the definition of impaired vagal function in terms of the HRR threshold that is associated with perioperative myocardial injury (HRR ≤ 12 beats min-1 (bpm), 60 seconds after cessation of cardiopulmonary exercise testing. The primary outcome of this secondary analysis was all-cause morbidity three and five days after surgery, defined using the Post-Operative Morbidity Survey. Secondary outcomes of this analysis were type of morbidity and time to become morbidity-free. Logistic regression and Cox regression tested for the association between HRR and morbidity. Results are presented as odds/hazard ratios [OR or HR; (95% confidence intervals).Results882/1941 (45.4%) patients had HRR≤12bpm. All-cause morbidity within 5 days of surgery was more common in 585/822 (71.2%) patients with HRR≤12bpm, compared to 718/1119 (64.2%) patients with HRR>12bpm (OR:1.38 (1.14-1.67); p = 0.001). HRR≤12bpm was associated with more frequent episodes of pulmonary (OR:1.31 (1.05-1.62);p = 0.02)), infective (OR:1.38 (1.10-1.72); p = 0.006), renal (OR:1.91 (1.30-2.79); p = 0.02)), cardiovascular (OR:1.39 (1.15-1.69); pConclusionsMulti-organ dysfunction is more common in surgical patients with cardiac vagal dysfunction, defined as HRR ≤ 12 bpm after preoperative cardiopulmonary exercise testing.Clinical trial registryISRCTN88456378
Assessment of functional capacity before major non-cardiac surgery: an international, prospective cohort study.
BACKGROUND: Functional capacity is an important component of risk assessment for major surgery. Doctors' clinical subjective assessment of patients' functional capacity has uncertain accuracy. We did a study to compare preoperative subjective assessment with alternative markers of fitness (cardiopulmonary exercise testing [CPET], scores on the Duke Activity Status Index [DASI] questionnaire, and serum N-terminal pro-B-type natriuretic peptide [NT pro-BNP] concentrations) for predicting death or complications after major elective non-cardiac surgery. METHODS: We did a multicentre, international, prospective cohort study at 25 hospitals: five in Canada, seven in the UK, ten in Australia, and three in New Zealand. We recruited adults aged at least 40 years who were scheduled for major non-cardiac surgery and deemed to have one or more risk factors for cardiac complications (eg, a history of heart failure, stroke, or diabetes) or coronary artery disease. Functional capacity was subjectively assessed in units of metabolic equivalents of tasks by the responsible anaesthesiologists in the preoperative assessment clinic, graded as poor (10). All participants also completed the DASI questionnaire, underwent CPET to measure peak oxygen consumption, and had blood tests for measurement of NT pro-BNP concentrations. After surgery, patients had daily electrocardiograms and blood tests to measure troponin and creatinine concentrations until the third postoperative day or hospital discharge. The primary outcome was death or myocardial infarction within 30 days after surgery, assessed in all participants who underwent both CPET and surgery. Prognostic accuracy was assessed using logistic regression, receiver-operating-characteristic curves, and net risk reclassification. FINDINGS: Between March 1, 2013, and March 25, 2016, we included 1401 patients in the study. 28 (2%) of 1401 patients died or had a myocardial infarction within 30 days of surgery. Subjective assessment had 19·2% sensitivity (95% CI 14·2-25) and 94·7% specificity (93·2-95·9) for identifying the inability to attain four metabolic equivalents during CPET. Only DASI scores were associated with predicting the primary outcome (adjusted odds ratio 0·96, 95% CI 0·83-0·99; p=0·03). INTERPRETATION: Subjectively assessed functional capacity should not be used for preoperative risk evaluation. Clinicians could instead consider a measure such as DASI for cardiac risk assessment. FUNDING: Canadian Institutes of Health Research, Heart and Stroke Foundation of Canada, Ontario Ministry of Health and Long-Term Care, Ontario Ministry of Research, Innovation and Science, UK National Institute of Academic Anaesthesia, UK Clinical Research Collaboration, Australian and New Zealand College of Anaesthetists, and Monash University.This study was supported by grants from the Canadian Institutes of Health Research, Heart and Stroke Foundation of Canada, Ontario Ministry of Health and Long-Term Care, Ontario Ministry of Research, Innovation and Science, UK National Institute of Academic Anaesthesia, UK Clinical Research Collaboration, Australian and New Zealand College of Anaesthetists, and Monash University (Melbourne, VIC, Australia). DNW is supported by a New Investigator Award from the Canadian Institutes of Health Research. DNW and BHC are partly supported by Merit Awards from the Department of Anesthesia at the University of Toronto. RMP is a Career Development Fellow for the British Journal of Anaesthesia and Royal College of Anaesthetists, and a professor for the UK National Institute for Health Research. TEFA is a clinical research training fellow for the UK Medical Research Council and British Journal of Anaesthesia. MPWG holds the British Oxygen Company Chair of Anaesthesia of the Royal College of Anaesthetists, which is awarded by the UK National Institute of Academic Anaesthesia. We thank the Li Ka Shing Knowledge Institute of St Michael's Hospital (Toronto, ON, Canada) for generously supporting the costs of international trial insurance for this study, and all the participating patients and staff across the 25 study sites