75 research outputs found

    On the use of polymer gels for assessing the total geometrical accuracy in clinical Gamma Knife radiosurgery applications

    Get PDF
    The nearly tissue equivalent MRI properties and the unique ability of registering 3D dose distributions of polymer gels were exploited to assess the total geometrical accuracy in clinical Gamma Knife applications, taking into account the combined effect of the unit’s mechanical accuracy, dose delivery precision and the geometrical distortions inherent in MR images used for irradiation planning. Comparison between planned and experimental data suggests that the MR-related distortions due to susceptibility effects dominate the total clinical geometrical accuracy which was found within 1 mm. The dosimetric effect of the observed sub-millimetre uncertainties on single shot GK irradiation plans was assessed using the target percentage coverage criterion, and a considerable target dose underestimation was found

    A methodology for assessing and improving the total geometric accuracy in gamma knife radiosurgery

    Get PDF
    The purpose of the study is to present an end-to-end experimental procedure, based on a polymer gel phantom, capable of assessing the total geometric uncertainty in GK radiosurgery applications, in which MR images are solely used for both target delineation and registration of patient image coordinates to the Leksell space. As a result the study aims to propose a time-efficient method, based on corresponding polymer gel results, which considerably improves the geometric accuracy in GK treatment delivery

    Dosimetric accuracy of a deterministic radiation transport based 192Ir brachytherapy treatment planning system: Part III. Comparison to Monte Carlo simulation in voxelized anatomical computational models

    Get PDF
    To compare TG43-based and Acuros deterministic radiation transport-based calculations of the BrachyVision treatment planning system (TPS) with corresponding Monte Carlo (MC) simulation results in heterogeneous patient geometries, in order to validate Acuros and quantify the accuracy improvement it marks relative to TG43

    Pathogenic Roles of CD14, Galectin-3, and OX40 during Experimental Cerebral Malaria in Mice

    Get PDF
    An in-depth knowledge of the host molecules and biological pathways that contribute towards the pathogenesis of cerebral malaria would help guide the development of novel prognostics and therapeutics. Genome-wide transcriptional profiling of the brain tissue during experimental cerebral malaria (ECM ) caused by Plasmodium berghei ANKA parasites in mice, a well established surrogate of human cerebral malaria, has been useful in predicting the functional classes of genes involved and pathways altered during the course of disease. To further understand the contribution of individual genes to the pathogenesis of ECM, we examined the biological relevance of three molecules – CD14, galectin-3, and OX40 that were previously shown to be overexpressed during ECM. We find that CD14 plays a predominant role in the induction of ECM and regulation of parasite density; deletion of the CD14 gene not only prevented the onset of disease in a majority of susceptible mice (only 21% of CD14-deficient compared to 80% of wildtype mice developed ECM, p<0.0004) but also had an ameliorating effect on parasitemia (a 2 fold reduction during the cerebral phase). Furthermore, deletion of the galectin-3 gene in susceptible C57BL/6 mice resulted in partial protection from ECM (47% of galectin-3-deficient versus 93% of wildtype mice developed ECM, p<0.0073). Subsequent adherence assays suggest that galectin-3 induced pathogenesis of ECM is not mediated by the recognition and binding of galectin-3 to P. berghei ANKA parasites. A previous study of ECM has demonstrated that brain infiltrating T cells are strongly activated and are CD44+CD62L− differentiated memory T cells [1]. We find that OX40, a marker of both T cell activation and memory, is selectively upregulated in the brain during ECM and its distribution among CD4+ and CD8+ T cells accumulated in the brain vasculature is approximately equal

    Assessing the dose rate delivery of helical TomoTherapy prostate and head &amp; neck treatments

    No full text
    The dose rate distributions delivered to 55 prostate and head &amp; neck (H&amp;N) cancer patients treated with a helical TomoTherapy (HT) system were resolved and assessed with regard to pitch and field width defined during treatment planning. Statistical analysis of the studied cases showed that the median treatment delivery time was 4.4 min and 6.3 min for the prostate and H&amp;N cases, respectively. Dose rate volume histogram data for the studied cases showed that the 25% and 12% of the volume of the planning target volumes of the prostate and H&amp;N cases are irradiated with a dose rate of greater or equal to 1 Gy min-1. Quartile dose rate (QDR) data confirmed that in HT, where the target is irradiated in slices, most of the dose is delivered to each voxel of the target when it travels within the beam. Analysis of the planning data from all cases showed that this lasts for 68 s (median value). QDRs results showed that using the 2.5 cm field width, 75% of the prescribed dose is delivered to target voxels with a median dose rate of at least 3.2 Gy min-1 and 4.5 Gy min-1, for the prostate and H&amp;N cases, respectively. Systematically higher dose rates were observed for the H&amp;N cases due to the shallower depths of the lesions in this anatomical site. Delivered dose rates were also found to increase with field width and pitch setting, due to the higher output of the system which, in general, results in accordingly decreased total treatment time. The biological effect of the dose rate findings of this work needs to be further investigated using in-vitro studies and clinical treatment data. © 2021 IOP Publishing Ltd

    On the development of a comprehensive MC simulation model for the Gamma Knife Perfexion radiosurgery unit

    No full text
    This work presents a comprehensive Monte Carlo (MC) simulation model for the Gamma Knife Perfexion (PFX) radiosurgery unit. Model-based dosimetry calculations were benchmarked in terms of relative dose profiles (RDPs) and output factors (OFs), against corresponding EBT2 measurements. To reduce the rather prolonged computational time associated with the comprehensive PFX model MC simulations, two approximations were explored and evaluated on the grounds of dosimetric accuracy. The first consists in directional biasing of the 60Co photon emission while the second refers to the implementation of simplified source geometric models. The effect of the dose scoring volume dimensions in OF calculations accuracy was also explored. RDP calculations for the comprehensive PFX model were found to be in agreement with corresponding EBT2 measurements. Output factors of 0.819 ± 0.004 and 0.8941 ± 0.0013 were calculated for the 4 mm and 8 mm collimator, respectively, which agree, within uncertainties, with corresponding EBT2 measurements and published experimental data. Volume averaging was found to affect OF results by more than 0.3% for scoring volume radii greater than 0.5 mm and 1.4 mm for the 4 mm and 8 mm collimators, respectively. Directional biasing of photon emission resulted in a time efficiency gain factor of up to 210 with respect to the isotropic photon emission. Although no considerable effect on relative dose profiles was detected, directional biasing led to OF overestimations which were more pronounced for the 4 mm collimator and increased with decreasing emission cone half-angle, reaching up to 6% for a 5 angle. Implementation of simplified source models revealed that omitting the sources&apos; stainless steel capsule significantly affects both OF results and relative dose profiles, while the aluminum-based bushing did not exhibit considerable dosimetric effect. In conclusion, the results of this work suggest that any PFX simulation model should be benchmarked in terms of both RDP and OF results. © 2016 Institute of Physics and Engineering in Medicine

    Dosimetric accuracy of a deterministic radiation transport based 192Ir brachytherapy treatment planning system. Part III. Comparison to Monte Carlo simulation in voxelized anatomical computational models

    No full text
    Purpose: To compare TG43-based and Acuros deterministic radiation transport-based calculations of the BrachyVision treatment planning system (TPS) with corresponding Monte Carlo (MC) simulation results in heterogeneous patient geometries, in order to validate Acuros and quantify the accuracy improvement it marks relative to TG43. Methods: Dosimetric comparisons in the form of isodose lines, percentage dose difference maps, and dose volume histogram results were performed for two voxelized mathematical models resembling an esophageal and a breast brachytherapy patient, as well as an actual breast brachytherapy patient model. The mathematical models were converted to digital imaging and communications in medicine (DICOM) image series for input to the TPS. The MCNP5 v.1.40 general-purpose simulation code input files for each model were prepared using information derived from the corresponding DICOM RT exports from the TPS. Results: Comparisons of MC and TG43 results in all models showed significant differences, as reported previously in the literature and expected from the inability of the TG43 based algorithm to account for heterogeneities and model specific scatter conditions. A close agreement was observed between MC and Acuros results in all models except for a limited number of points that lay in the penumbra of perfectly shaped structures in the esophageal model, or at distances very close to the catheters in all models. Conclusions: Acuros marks a significant dosimetry improvement relative to TG43. The assessment of the clinical significance of this accuracy improvement requires further work. Mathematical patient equivalent models and models prepared from actual patient CT series are useful complementary tools in the methodology outlined in this series of works for the benchmarking of any advanced dose calculation algorithm beyond TG43. © 2013 American Association of Physicists in Medicine
    corecore