1,282 research outputs found
Recommended from our members
Hypovolaemic shock: assessment, pathophysiology and nursing care
Hypovolaemia leads to a number of key physiological responses which require systematic assessment and interpretation. This article focuses on a case study involving a patient with Parkinson’s disease who became hypovolaemic following a fall at home, to illustrate the impact of hypovolaemia and current recommendations regarding fluid resuscitation. ABCDE assessment is considered as well as arterial blood gas analysis and interpretation is explained in light of the patient scenario
Selective d-state Conduction Blocking in Nickel Nanocontacts
The lowest conductance step for a Ni nanocontact is anomalously small in
comparison with the large expected number of conducting channels. We present
electronic structure calculations for an extremely idealized Ni nanobridge
consisting of just a monatomic nanowire. Our calculations show that no less
than eight single spin bands cross the Fermi level in a nonmagnetic Ni
monatomic wire, dropping marginally to seven in the more stable, fully
ferromagnetic state. However, when we build in the wire a magnetization
reversal, or domain wall, by forcing the net magnetization to be zero, we
suddenly find that d electrons selectively cease to propagate across the wall.
s electron propagation remains, and can account for the small observed
conductance steps.Comment: 9 pages, 4 figures, Surface Science, to appea
Structural Properties and Relative Stability of (Meta)Stable Ordered, Partially-ordered and Disordered Al-Li Alloy Phases
We resolve issues that have plagued reliable prediction of relative phase
stability for solid-solutions and compounds. Due to its commercially important
phase diagram, we showcase Al-Li system because historically density-functional
theory (DFT) results show large scatter and limited success in predicting the
structural properties and stability of solid-solutions relative to ordered
compounds. Using recent advances in an optimal basis-set representation of the
topology of electronic charge density (and, hence, atomic size), we present DFT
results that agree reasonably well with all known experimental data for the
structural properties and formation energies of ordered, off-stoichiometric
partially-ordered and disordered alloys, opening the way for reliable study in
complex alloys.Comment: 7 pages, 2 figures, 2 Table
Narrow structure in the coherent population trapping resonances in rubidium and Rayleigh scattering
The measurement of the coherent-population-trapping (CPT) resonances in
uncoated Rb vacuum cells has shown that the shape of the resonances is
different in different cells. In some cells the resonance has a complex shape -
a narrow Lorentzian structure, which is not power broadened, superimposed on
the power broadened CPT resonance. The results of the performed investigations
on the fluorescence angular distribution are in agreement with the assumption
that the narrow structure is a result of atom interaction with Rayleigh
scattering light. The results are interesting for indication of the vacuum
cleanness of the cells and building of magnetooptical sensors
Detailed studies of non-linear magneto-optical resonances at D1 excitation of Rb-85 and Rb-87 for partially resolved hyperfine F-levels
Experimental signals of non-linear magneto-optical resonances at D1
excitation of natural rubidium in a vapor cell have been obtained and described
with experimental accuracy by a detailed theoretical model based on the optical
Bloch equations. The D1 transition of rubidium is a challenging system to
analyze theoretically because it contains transitions that are only partially
resolved under Doppler broadening. The theoretical model took into account all
nearby transitions, the coherence properties of the exciting laser radiation,
and the mixing of magnetic sublevels in an external magnetic field and also
included averaging over the Doppler profile. Great care was taken to obtain
accurate experimental signals and avoid systematic errors. The experimental
signals were reproduced very well at each hyperfine transition and over a wide
range of laser power densities, beam diameters, and laser detunings from the
exact transition frequency. The bright resonance expected at the F_g=1 -->
F_e=2 transition of Rb-87 has been observed. A bright resonance was observed at
the F_g=2 --> F_e=3 transition of Rb-85, but displaced from the exact position
of the transition due to the influence of the nearby F_g=2 --> F_e=2
transition, which is a dark resonance whose contrast is almost two orders of
magnitude larger than the contrast of the bright resonance at the F_g=2 -->
F_e=3 transition. Even in this very delicate situation, the theoretical model
described in detail the experimental signals at different laser detunings.Comment: 11 pages, 9 figure
Spin Screening and Antiscreening in a Ferromagnet/Superconductor Heterojunction
We present a theoretical study of spin screening effects in a
ferromagnet/superconductor (F/S) heterojunction. It is shown that the magnetic
moment of the ferromagnet is screened or antiscreened, depending on the
polarization of the electrons at the Fermi level. If the polarization is
determined by the electrons of the majority (minority) spin band then the
magnetic moment of the ferromagnet is screened (antiscreened) by the electrons
in the superconductor. We propose experiments that may confirm our theory: for
ferromagnetic alloys with certain concentration of Fe or Ni ions there will be
screening or antiscreening respectively. Different configurations for the
density of states are also discussed.Comment: 5 pages; 4 figures. to be published in Phys. Rev,
Efficient nonlinear room-temperature spin injection from ferromagnets into semiconductors through a modified Schottky barrier
We suggest a consistent microscopic theory of spin injection from a
ferromagnet (FM) into a semiconductor (S). It describes tunneling and emission
of electrons through modified FM-S Schottky barrier with an ultrathin heavily
doped interfacial S layer . We calculate nonlinear spin-selective properties of
such a reverse-biased FM-S junction, its nonlinear I-V characteristic, current
saturation, and spin accumulation in S. We show that the spin polarization of
current, spin density, and penetration length increase with the total current
until saturation. We find conditions for most efficient spin injection, which
are opposite to the results of previous works, since the present theory
suggests using a lightly doped resistive semiconductor. It is shown that the
maximal spin polarizations of current and electrons (spin accumulation) can
approach 100% at room temperatures and low current density in a nondegenerate
high-resistance semiconductor.Comment: 7 pages, 2 figures; provides detailed comparison with earlier works
on spin injectio
About the strength of correlation effects in the electronic structure of iron
The strength of electronic correlation effects in the spin-dependent
electronic structure of ferromagnetic bcc Fe(110) has been investigated by
means of spin and angle-resolved photoemission spectroscopy. The experimental
results are compared to theoretical calculations within the three-body
scattering approximation and within the dynamical mean-field theory, together
with one-step model calculations of the photoemission process. This comparison
indicates that the present state of the art many-body calculations, although
improving the description of correlation effects in Fe, give too small mass
renormalizations and scattering rates thus demanding more refined many-body
theories including non-local fluctuations.Comment: 4 pages, 4 figure
Atomic correlations in itinerant ferromagnets: quasi-particle bands of nickel
We measure the band structure of nickel along various high-symmetry lines of
the bulk Brillouin zone with angle-resolved photoelectron spectroscopy. The
Gutzwiller theory for a nine-band Hubbard model whose tight-binding parameters
are obtained from non-magnetic density-functional theory resolves most of the
long-standing discrepancies between experiment and theory on nickel. Thereby we
support the view of itinerant ferromagnetism as induced by atomic correlations.Comment: 4 page REVTeX 4.0, one figure, one tabl
Four-terminal resistance of an interacting quantum wire with weakly invasive contacts
We analyze the behavior of the four-terminal resistance, relative to the
two-terminal resistance of an interacting quantum wire with an impurity, taking
into account the invasiveness of the voltage probes. We consider a
one-dimensional Luttinger model of spinless fermions for the wire. We treat the
coupling to the voltage probes perturbatively, within the framework of
non-equilibrium Green function techniques. Our investigation unveils the
combined effect of impurities, electron-electron interactions and invasiveness
of the probes on the possible occurrence of negative resistance.Comment: 10 pages, 7 figure
- …
