690 research outputs found

    Huge negative differential conductance in Au-H2 molecular nanojunctions

    Full text link
    Experimental results showing huge negative differential conductance in gold-hydrogen molecular nanojunctions are presented. The results are analyzed in terms of two-level system (TLS) models: it is shown that a simple TLS model cannot produce peaklike structures in the differential conductance curves, whereas an asymmetrically coupled TLS model gives perfect fit to the data. Our analysis implies that the excitation of a bound molecule to a large number of energetically similar loosely bound states is responsible for the peaklike structures. Recent experimental studies showing related features are discussed within the framework of our model.Comment: 9 pages, 8 figure

    Large protein complex interfaces have evolved to promote cotranslational assembly

    Get PDF
    Assembly pathways of protein complexes should be precise and efficient to minimise misfolding and unwanted interactions with other proteins in the cell. One way to achieve this efficiency is by seeding assembly pathways during translation via the cotranslational assembly of subunits. While recent evidence suggests that such cotranslational assembly is widespread, little is known about the properties of protein complexes associated with the phenomenon. Here, using a combination of proteome-specific protein complex structures and publicly available ribosome profiling data, we show that cotranslational assembly is particularly common between subunits that form large intermolecular interfaces. To test whether large interfaces have evolved to promote cotranslational assembly, as opposed to cotranslational assembly being a non-adaptive consequence of large interfaces, we compared the sizes of first and last translated interfaces of heteromeric subunits in bacterial, yeast, and human complexes. When considering all together, we observe the N-terminal interface to be larger than the C-terminal interface 54% of the time, increasing to 64% when we exclude subunits with only small interfaces, which are unlikely to cotranslationally assemble. This strongly suggests that large interfaces have evolved as a means to maximise the chance of successful cotranslational subunit binding

    Buffering of genetic dominance by allele-specific protein complex assembly

    Get PDF

    Conductance of Pd-H nanojunctions

    Get PDF
    Results of an experimental study of palladium nanojunctions in hydrogen environment are presented. Two new hydrogen-related atomic configurations are found, which have a conductances of ~0.5 and ~1 quantum unit (2e^2/h). Phonon spectrum measurements demonstrate that these configurations are situated between electrodes containing dissolved hydrogen. The crucial differences compared to the previously studied Pt-H_2 junctions, and the possible microscopic realizations of the new configurations in palladium-hydrogen atomic-sized contacts are discussed.Comment: 4 pages, 4 figure

    Nonlinear semigroups for nonlocal conservation laws

    Get PDF
    We investigate a class of nonlocal conservation laws in several space dimensions, where the continuum average of weighted nonlocal interactions are considered over a finite horizon. We establish well-posedness for a broad class of flux functions and initial data via semigroup theory in Banach spaces and, in particular, via the celebrated Crandall–Liggett Theorem. We also show that the unique mild solution satisfies a Kružkov-type nonlocal entropy inequality. Similarly to the local case, we demonstrate an efficient way of proving various desirable qualitative properties of the unique solution

    Cricket and yellow mealworm powders promote higher bioaccessible fractions of mineral elements in functional bread

    Get PDF
    The application of cricket and yellow mealworm powders to improve the mineral bioaccessibility of bread was investigated. Breads enriched with 10% cricket (CPB-10%) and 10% yellow mealworm (YMPB-10%) powders showed a 1.5-, 2.95-, and 1.22-fold increase in proteins, total lipids, and fibers, respectively, compared to the reference white wheat bread (WFB-100%). Compared to reference bread, a significant increase in the essential amino acids valine (9.72%) and tyrosine (1.86%) contents was observed in the CPB-10% and YMPB-10%. The MUFAs account for 35.22% in CPB-10%, 30.77% in YMPB-10%, and 32.34% in WFB-100%. In vitro digestion experiments showed a higher bioaccessibility of Na, K, Ca, Mg, P, Fe, Zn, Mn, and Li from insect bread than from white bread. Only Cu was more bioaccessible from FB-100% than from insect bread. The results shed light on the possible contribution of insect bread consumption to mitigate deficiencies in several important macro- and microelements
    • …
    corecore