687 research outputs found

    Interaction of the NO 3pπ (C 2Π) Rydberg state with RG (RG = Ne, Kr, and Xe): potential energy surfaces and spectroscopy

    Get PDF
    We present new potential energy surfaces for the interaction of NO(C 2Π) with each of Ne, Kr, and Xe. The potential energy surfaces have been calculated using second order Møller-Plesset perturbation theory, exploiting a procedure to converge the reference Hartree-Fock wavefunction for the excited states: the maximum overlap method. The bound rovibrational states obtained from the surfaces are used to simulate the electronic spectra and their appearance is in good agreement with available (2+1) REMPI spectra. We discuss the assignment and appearance of these spectra, comparing to that of NO-Ar

    Selective loss of myelin-associated glycoprotein from myelin correlates with anti-MAG antibody titre in demyelinating paraproteinaemic polyneuropathy

    Get PDF
    Summary The IgM monoclonal autoantibodies of patients with demyelinating paraproteinaemic polyneuropathy recognize a carbohydrate structure present on both myelin-associated glycoprotein (MAG) and protein zero (Po). These autoantibodies are sufficient to cause the disease but the mechanism of demyelination remains unclear. We have analysed nerve biopsies from eight patients with polyneuropathy and anti-MAG antibodies by quantitative immunohistochemistry and find a concordant pattern of reduced expression of myelin markers with the loss of myelinated fibres. We report here novel features of this disease, in particular a selective lack of detectable MAG in a large proportion of myelinated fibres containing Po, myelin basic protein (MBP) and periaxin. There is also an inverse correlation of the distribution of MAG in peripheral never myelin with the serum anti-MAG antibody titres but no correlation of these titres with the loss of myelinated fibres. Double immunofluorescence staining of paraproteinaemic polyneuropathy (PPN) nerves shows anti-MAG IgM deposited on the periphery of myelinated fibres associated with or lacking MAG staining. These data suggest that the binding of anti-MAG antibodies to MAG and/or other myelin component(s) results in MAG downregulation and may have an essential role in the molecular mechanisms leading to demyelination and partial regeneration in this diseas

    Increased Lysis of Stem Cells but Not Their Differentiated Cells by Natural Killer Cells; De-Differentiation or Reprogramming Activates NK Cells

    Get PDF
    The aims of this study are to demonstrate the increased lysis of stem cells but not their differentiated counterparts by the NK cells and to determine whether disturbance in cell differentiation is a cause for increased sensitivity to NK cell mediated cytotoxicity. Increased cytotoxicity and augmented secretion of IFN-γ were both observed when PBMCs or NK cells were co-incubated with primary UCLA oral squamous carcinoma stem cells (UCLA-OSCSCs) when compared to differentiated UCLA oral squamous carcinoma cells (UCLA-OSCCs). In addition, human embryonic stem cells (hESCs) were also lysed greatly by the NK cells. Moreover, NK cells were found to lyse human Mesenchymal Stem Cells (hMSCs), human dental pulp stem cells (hDPSCs) and human induced pluripotent stem cells (hiPSCs) significantly more than their differentiated counterparts or parental lines from which they were derived. It was also found that inhibition of differentiation or reversion of cells to a less-differentiated phenotype by blocking NFκB or targeted knock down of COX2 in monocytes significantly augmented NK cell cytotoxicity and secretion of IFN-γ. Taken together, these results suggest that stem cells are significant targets of the NK cell cytotoxicity. However, to support differentiation of a subset of tumor or healthy untransformed primary stem cells, NK cells may be required to lyse a number of stem cells and/or those which are either defective or incapable of full differentiation in order to lose their cytotoxic function and gain the ability to secrete cytokines (split anergy). Therefore, patients with cancer may benefit from repeated allogeneic NK cell transplantation for specific elimination of cancer stem cells

    Persistence of tumor-infiltrating CD8 T cells is tumor-dependent but antigen-independent

    Get PDF
    How tumor-infiltrating lymphocytes (TILs) that are tumor-specific but functionally tolerant persist in the antigen-expressing tumor tissue is largely unknown. We have previously developed a modified TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model where prostate cancer cells express the T-cell epitope SIYRYYGL (SIY) recognized by CD8 T cells expressing the 2C T-cell receptor (TCR) (referred to as TRP-SIY mice). In TRP-SIY mice, activated 2C T cells rapidly become tolerant following infiltration into the prostate tumor. In this study, we show that tolerant 2C T cells persist in the prostate tumor of TRP-SIY mice by proliferating slowly in a tumor-dependent, but antigen-, interleukin (IL)-7- and IL-15-independent manner. We also show that disappearance of 2C T cells from the lymphoid organs of TRP-SIY mice are due to antigen-induced T-cell contraction rather than altered trafficking or generalized T-cell depletion in the mice. Finally, we show that clonal T cells unreactive to SIY are equally capable of persisting in the prostate tumor. These findings suggest that while functional tolerance of TILs is induced by antigen, persistence of tolerant TILs in the tumor tissue is mediated by a novel mechanism: slow proliferation independent of antigen and homeostatic cytokines. These results also allow CD8 T-cell survival in the tumor environment to be compared with T-cell survival in chronic infection
    • …
    corecore