39 research outputs found
Social pedagogy and social work relations in Greece: autonomous trajectories
This article explores the relationship between social pedagogy and social work in Greece. The search begins with the identification of their philosophical roots, which, although they are common and start from the Ancient Greek philosophers, have led the course of each discipline in a different direction. What follows is the presentation of the most important defining elements of the development of the studies of social work and social pedagogy in Greece, which include features and historical landmarks. The different trajectories can be seen from the development of studies, where social work has a long tradition as an academic discipline, whereas the academic tradition of social pedagogy is much shorter. A similar differentiation is found in the professional frameworks of social work and social pedagogy in Greece, that is, in the institutionalisation of the profession of social worker and social pedagogue. Indicative data from the field of research of each discipline are then presented. Despite the differences and the autonomous trajectories, remarkable commonalities and similarities between social pedagogy and social work in Greece are identified, such as some basic principles, priorities, epistemological and methodological dimensions and some common areas of interest and action. Therefore, the autonomous trajectories of these disciplines do not separate them, but as potentially complementary, are able to make interdisciplinary connections between them, so that prevention and intervention programmes, especially in the fields of education and the community, can be developed
Apparatus for histological validation of in vivo and ex vivo magnetic resonance imaging of the human prostate
This article describes apparatus to aid histological validation of magnetic resonance
imaging studies of the human prostate. The apparatus includes a 3D-printed patientspecific
mold that facilitates aligned in vivo and ex vivo imaging, in situ tissue fixation, and
tissue sectioning with minimal organ deformation. The mold and a dedicated container
include MRI-visible landmarks to enable consistent tissue positioning and minimize
image registration complexity. The inclusion of high spatial resolution ex vivo imaging
aids in registration of in vivo MRI and histopathology data
SARDU-Net: a new method for model-free, data-driven experiment design in quantitative MRI
This work introduces the “Select and retrieve via direct up-sampling” network (SARDU-Net), a new method for model-free, data-driven quantitative MRI (qMRI) experiment design. SARDU-Net identifies informative measurements within lengthy acquisitions and reconstructs fully-sampled signals from a sub-protocol, without prior information on the MRI contrast. It combines two deep networks: a selector, which selects a signal sub-sample, and a predictor, which retrieves input signals. SARDU-Net can be run with standard computational resources and can increase the clinical appeal of qMRI. Here we demonstrate its potential on qMRI of prostate and spinal cord, two areas where fast acquisitions are key
Feasibility of data-driven, model-free quantitative MRI protocol design: application to brain and prostate diffusion-relaxation imaging
Purpose: We investigate the feasibility of data-driven, model-free quantitative MRI (qMRI) protocol design on in vivo brain and prostate diffusion-relaxation imaging (DRI).
Methods: We select subsets of measurements within lengthy pilot scans, without identifying tissue parameters for which to optimise for. We use the “select and retrieve via direct upsampling” (SARDU-Net) algorithm, made of a selector, identifying measurement subsets, and a predictor, estimating fully-sampled signals from the subsets. We implement both using artificial neural networks, which are trained jointly end-to-end. We deploy the algorithm on brain (32 diffusion-/T1-weightings) and prostate (16 diffusion-/T2-weightings) DRI scans acquired on three healthy volunteers on two separate 3T Philips systems each. We used SARDU-Net to identify sub-protocols of fixed size, assessing reproducibility and testing sub-protocols for their potential to inform multi-contrast analyses via the T1-weighted spherical mean diffusion tensor (T1-SMDT, brain) and hybrid multi-dimensional MRI (HM-MRI, prostate) models, for which sub-protocol selection was not optimised explicitly.
Results: In both brain and prostate, SARDU-Net identifies sub-protocols that maximise information content in a reproducible manner across training instantiations using a small number of pilot scans. The sub-protocols support T1-SMDT and HM-MRI multi-contrast modelling for which they were not optimised explicitly, providing signal quality-of-fit in the top 5% against extensive sub-protocol comparisons.
Conclusions: Identifying economical but informative qMRI protocols from subsets of rich pilot scans is feasible and potentially useful in acquisition-time-sensitive applications in which there is not a qMRI model of choice. SARDU-Net is demonstrated to be a robust algorithm for data-driven, model-free protocol design
Uterine selection of human embryos at implantation
Human embryos frequently harbor large-scale complex chromosomal errors that impede normal development. Affected embryos may fail to implant although many first breach the endometrial epithelium and embed in the decidualizing stroma before being rejected via mechanisms that are poorly understood. Here we show that developmentally impaired human embryos elicit an endoplasmic stress response in human decidual cells. A stress response was also evident upon in vivo exposure of mouse uteri to culture medium conditioned by low-quality human embryos. By contrast, signals emanating from developmentally competent embryos activated a focused gene network enriched in metabolic enzymes and implantation factors. We further show that trypsin, a serine protease released by pre-implantation embryos, elicits Ca2+ signaling in endometrial epithelial cells. Competent human embryos triggered short-lived oscillatory Ca2+ fluxes whereas low-quality embryos caused a heightened and prolonged Ca2+ response. Thus, distinct positive and negative mechanisms contribute to active selection of human embryos at implantation
NiftySim: A GPU-based nonlinear finite element package for simulation of soft tissue biomechanics
Purpose
NiftySim, an open-source finite element toolkit, has been designed to allow incorporation of high-performance soft tissue simulation capabilities into biomedical applications. The toolkit provides the option of execution on fast graphics processing unit (GPU) hardware, numerous constitutive models and solid-element options, membrane and shell elements, and contact modelling facilities, in a simple to use library.
Methods
The toolkit is founded on the total Lagrangian explicit dynamics (TLEDs) algorithm, which has been shown to be efficient and accurate for simulation of soft tissues. The base code is written in C ++++ , and GPU execution is achieved using the nVidia CUDA framework. In most cases, interaction with the underlying solvers can be achieved through a single Simulator class, which may be embedded directly in third-party applications such as, surgical guidance systems. Advanced capabilities such as contact modelling and nonlinear constitutive models are also provided, as are more experimental technologies like reduced order modelling. A consistent description of the underlying solution algorithm, its implementation with a focus on GPU execution, and examples of the toolkit’s usage in biomedical applications are provided.
Results
Efficient mapping of the TLED algorithm to parallel hardware results in very high computational performance, far exceeding that available in commercial packages.
Conclusion
The NiftySim toolkit provides high-performance soft tissue simulation capabilities using GPU technology for biomechanical simulation research applications in medical image computing, surgical simulation, and surgical guidance applications
A simple and rapid flow cytometry-based assay to identify a competent embryo prior to embryo transfer
Multiple pregnancy is a risk for prematurity and preterm birth. The goal of assisted reproduction is to achieve a single pregnancy, by transferring a single embryo. This requires improved methods to identify the competent embryo. Here, we describe such a test, based on flow cytometric determination of the nucleic acid (PI+) containing extracellular vesicle (EV) count in day 5 embryo culture media. 88 women undergoing IVF were included in the study. More than 1 embryos were transferred to most patients. In 58 women, the transfer resulted in clinical pregnancy, whereas in 30 women in implantation failure. In 112 culture media of embryos from the "clinical pregnancy" group, the number of PI+ EVs was significantly lower than in those of 49 embryos, from the "implantation failure" group. In 14 women, transfer of a single embryo resulted in a singleton pregnancy, or, transfer of two embryos in twin pregnancy. The culture media of 19 out of the 20 "confirmed competent" embryos contained a lower level of PI+ EVs than the cut off level, suggesting that the competent embryo can indeed be identified by low PI+ EV counts. We developed a noninvasive, simple, inexpensive, quick test, which identifies the embryos that are most likely to implant
Microarray analysis reveals abnormal chromosomal complements in over 70% of 14 normally developing human embryos
STUDY QUESTION: What are the aneuploidy rates and incidence of mosaicism in good-quality human preimplantation embryos. SUMMARY ANSWER: High-level mosaicism and structural aberrations are not restricted to arrested or poorly developing embryos but are also common in good-quality IVF embryos. WHAT IS KNOWN ALREADY: Humans, compared with other mammals, have a poor fertility rate, and even IVF treatments have a relatively low success rate. It is known that human gametes and early preimplantation embryos carry chromosomal abnormalities that are thought to lower their developmental potential. STUDY DESIGN, SIZEAND DURATION: The embryos studied came from nine young (age <35 years old) IVF patients and were part of a cohort of embryos that all resulted in healthy births. These 14 embryos inseminated by ICSI and cryopreserved on Day 2 of development were thawed, cultured overnight and allowed to succumb by being left at room temperature for 24 h. Following removal of the zona pellucida, blastomeres were disaggregated and collected. PARTICIPANTS/MATERIALS, SETTING AND METHODS: There were 91 single blastomeres collected and amplified by multiple displacement amplification. Array-comparative genomic hybridization was performed on the amplified DNA. Array-data were normalized and aneuploidy was detected by the circular binary segmentation method. MAIN RESULTS AND THE ROLE OF CHANCE: The good-quality embryos exhibited high rates of aneuploidy, 10 of 14 (71.4%) of the embryos being mosaic. While none of the embryos had the same aneuploidy pattern in all cells, 4 of 14 (28.6%) were uniformly diploid. Of the 70 analysed blastomeres, 55.7% were diploid and 44.3% had chromosomal abnormalities, while 29% of the abnormal cells carried structural aberrations. WIDER IMPLICATIONS OF THE FINDINGS: Finding such a high rate of aneuploidy and mosaicism in excellent quality embryos from cycles with a high implantation rate warrants further research on the origin and significance of chromosomal abnormalities in human preimplantation embryos. STUDY FUNDING/COMPETING INTEREST(S): This research was supported by the Instituut voor de aanmoediging van innovatie door Wetenschap en Technologie in Vlaanderen (IWT-Vlaanderen). A.M. is a PhD student at the IWT-Vlaanderen. C.S. is a postdoctoral fellow at the FWO Vlaanderen. There are no competing interests.status: publishe