7,375 research outputs found

    Four Leaves of Renewed Luck

    Full text link

    Foreword

    Get PDF

    Wildlife disease elimination and 1 density dependence

    Get PDF
    Disease control by managers is a crucial response to emerging wildlife epidemics, yet the means of control may be limited by the method of disease transmission. In particular, it is widely held that population reduction, while effective for controlling diseases that are subject to density-dependent transmission, is ineffective for controlling diseases that are subject to frequency-dependent transmission. We investigate control for horizontally transmitted diseases with frequency-dependent transmission where the control is via nonselective (for infected animals) culling or harvesting and the population can compensate through density-dependent recruitment or survival. Using a mathematical model, we show that culling or harvesting can eradicate the disease, even when transmission dynamics are frequency-dependent. E 24 radication can be achieved under frequency-dependent transmission when density-dependent population regulation induces compensatory growth of new, healthy individuals, which has the net effect of reducing disease prevalence by dilution. We also show that if harvest is used simultaneously with vaccination and there is high enough transmission coefficient, application of both controls may be less efficient than when vaccination alone is used. We illustrate the effects of these control approaches on disease prevalence using assumed parameters for chronic wasting disease in deer where the disease is transmitted directly among deer and through the environment

    Spectral irradiance curve calculations for any type of solar eclipse

    Get PDF
    A simple procedure is described for calculating the eclipse function (EF), alpha, and hence the spectral irradiance curve (SIC), (1-alpha), for any type of solar eclipse: namely, the occultation (partial/total) eclipse and the transit (partial/annular) eclipse. The SIC (or the EF) gives the variation of the amount (or the loss) of solar radiation of a given wavelength reaching a distant observer for various positions of the moon across the sun. The scheme is based on the theory of light curves of eclipsing binaries, the results of which are tabulated in Merrill's Tables, and is valid for all wavelengths for which the solar limb-darkening obeys the cosine law: J = sub c (1 - X + X cost gamma). As an example of computing the SIC for an occultation eclipse which may be total, the calculations for the March 7, 1970, eclipse are described in detail

    A distributed fault-detection and diagnosis system using on-line parameter estimation

    Get PDF
    The development of a model-based fault-detection and diagnosis system (FDD) is reviewed. The system can be used as an integral part of an intelligent control system. It determines the faults of a system from comparison of the measurements of the system with a priori information represented by the model of the system. The method of modeling a complex system is described and a description of diagnosis models which include process faults is presented. There are three distinct classes of fault modes covered by the system performance model equation: actuator faults, sensor faults, and performance degradation. A system equation for a complete model that describes all three classes of faults is given. The strategy for detecting the fault and estimating the fault parameters using a distributed on-line parameter identification scheme is presented. A two-step approach is proposed. The first step is composed of a group of hypothesis testing modules, (HTM) in parallel processing to test each class of faults. The second step is the fault diagnosis module which checks all the information obtained from the HTM level, isolates the fault, and determines its magnitude. The proposed FDD system was demonstrated by applying it to detect actuator and sensor faults added to a simulation of the Space Shuttle Main Engine. The simulation results show that the proposed FDD system can adequately detect the faults and estimate their magnitudes

    Real-time diagnostics for a reusable rocket engine

    Get PDF
    A hierarchical, decentralized diagnostic system is proposed for the Real-Time Diagnostic System component of the Intelligent Control System (ICS) for reusable rocket engines. The proposed diagnostic system has three layers of information processing: condition monitoring, fault mode detection, and expert system diagnostics. The condition monitoring layer is the first level of signal processing. Here, important features of the sensor data are extracted. These processed data are then used by the higher level fault mode detection layer to do preliminary diagnosis on potential faults at the component level. Because of the closely coupled nature of the rocket engine propulsion system components, it is expected that a given engine condition may trigger more than one fault mode detector. Expert knowledge is needed to resolve the conflicting reports from the various failure mode detectors. This is the function of the diagnostic expert layer. Here, the heuristic nature of this decision process makes it desirable to use an expert system approach. Implementation of the real-time diagnostic system described above requires a wide spectrum of information processing capability. Generally, in the condition monitoring layer, fast data processing is often needed for feature extraction and signal conditioning. This is usually followed by some detection logic to determine the selected faults on the component level. Three different techniques are used to attack different fault detection problems in the NASA LeRC ICS testbed simulation. The first technique employed is the neural network application for real-time sensor validation which includes failure detection, isolation, and accommodation. The second approach demonstrated is the model-based fault diagnosis system using on-line parameter identification. Besides these model based diagnostic schemes, there are still many failure modes which need to be diagnosed by the heuristic expert knowledge. The heuristic expert knowledge is implemented using a real-time expert system tool called G2 by Gensym Corp. Finally, the distributed diagnostic system requires another level of intelligence to oversee the fault mode reports generated by component fault detectors. The decision making at this level can best be done using a rule-based expert system. This level of expert knowledge is also implemented using G2

    Classification of Generalized Multiresolution Analyses

    Get PDF
    We discuss how generalized multiresolution analyses (GMRAs), both classical and those defined on abstract Hilbert spaces, can be classified by their multiplicity functions mm and matrix-valued filter functions HH. Given a natural number valued function mm and a system of functions encoded in a matrix HH satisfying certain conditions, a construction procedure is described that produces an abstract GMRA with multiplicity function mm and filter system HH. An equivalence relation on GMRAs is defined and described in terms of their associated pairs (m,H)(m,H). This classification system is applied to classical examples in L2(Rd)L^2 (\mathbb R^d) as well as to previously studied abstract examples.Comment: 18 pages including bibliograp

    A Method for Reducing the Severity of Epidemics by Allocating Vaccines According to Centrality

    Full text link
    One long-standing question in epidemiological research is how best to allocate limited amounts of vaccine or similar preventative measures in order to minimize the severity of an epidemic. Much of the literature on the problem of vaccine allocation has focused on influenza epidemics and used mathematical models of epidemic spread to determine the effectiveness of proposed methods. Our work applies computational models of epidemics to the problem of geographically allocating a limited number of vaccines within several Texas counties. We developed a graph-based, stochastic model for epidemics that is based on the SEIR model, and tested vaccine allocation methods based on multiple centrality measures. This approach provides an alternative method for addressing the vaccine allocation problem, which can be combined with more conventional approaches to yield more effective epidemic suppression strategies. We found that allocation methods based on in-degree and inverse betweenness centralities tended to be the most effective at containing epidemics.Comment: 10 pages, accepted to ACM BCB 201
    corecore