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Abstract

We discuss how generalized multiresolution analyses (GMRAs), both classical and those defined on ab-
stract Hilbert spaces, can be classified by their multiplicity functions m and matrix-valued filter functions H .
Given a natural number valued function m and a system of functions encoded in a matrix H satisfying cer-
tain conditions, a construction procedure is described that produces an abstract GMRA with multiplicity
function m and filter system H . An equivalence relation on GMRAs is defined and described in terms of
their associated pairs (m,H). This classification system is applied to MRAs and other classical examples
in L2(Rd) as well as to previously studied abstract examples.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

A generalized multiresolution analysis (GMRA) is a Hilbert space structure traditionally
associated with classical wavelets, that is, functions whose dilates of translates provide an or-
thonormal basis for L2(Rd). Given a wavelet, the nested sequence of subspaces Vj that result
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from taking only dilation powers less than j are dense and have trivial intersection, with Vj+1
the dilate of Vj , and with V0 invariant under translation. Such a structure is called a GMRA [6],
and was developed to understand such wavelets as the famous example given by Journé, whose
V0 space does not have an orthonormal basis given by translates of a single function called a
scaling function. When V0 has this stronger property, the nested sequence {Vj } is called a mul-
tiresolution analysis (MRA) [22,23]. Both MRAs and GMRAs have been extensively exploited
to produce and understand wavelets, which in turn have proven useful for applications such as
image and signal processing.

While wavelets and multiresolution structures were first studied in the Hilbert space L2(Rd),
analogous definitions make sense in other Hilbert spaces that have appropriate dilation and trans-
lation operators. Dutkay and Jorgensen [16] pioneered the study of wavelets in function spaces
on fractals, with later work by D’Andrea et al. [14]. Larsen, Raeburn and coworkers then showed
that these and other interesting examples can be constructed via direct limits [19,4,5]. Dutkay
et al. [9,17] constructed MRAs and super-wavelets in Hilbert spaces formed by direct sums of
L2(Rd) to orthonormalize examples such as the Cohen wavelet. Tensor products of known ex-
amples lead to more exotic specimens (see Section 5). Our purpose in this paper is to construct
a set of classifying parameters for GMRAs in order to unify and allow comparison of all these
disparate examples. We also provide an explicit construction of a canonical GMRA equivalent to
each of them.

Accordingly, we will consider GMRA structures in an abstract Hilbert space H, equipped
with “translations” given by a unitary representation π of a countable abelian group Γ acting
in H, and a “dilation” given by a unitary operator δ.

We assume that these operators are related by

δ−1πγ δ = πα(γ ) (1)

for all γ ∈ Γ , where α is an isomorphism of Γ into itself such that the index of α(Γ ) in Γ equals
N > 1, and such that

⋂
αn(Γ ) = {0}. These definitions generalize the classical case of ordinary

translation by the integer lattice in L2(Rd), given by πnf (x) = f (x − n), and dilation by an
expansive integer matrix A, given by δf (x) = √|detA|f (Ax).

The structure of a GMRA, and thus the parameters that uniquely identify it, are revealed via
Stone’s Theorem on unitary representations of abelian groups. Using this theorem, we know
that the representation π restricted to V0 is completely determined by a measure μ on the dual
group Γ̂ and a Borel multiplicity function m : Γ̂ → {0,1,2, . . . ,∞}, which essentially describes
how many times each character occurs in the decomposition of π |V0 . There is a unitary equiv-
alence J between the action of π on V0 and multiplication by characters on

⊕
L2(σi), where

σi = {ω: m(ω) � i}. Because of this, we think of J as a partial alternative Fourier transform. For
simplicity, in this paper we will restrict our attention to the commonly studied case where μ is
Haar measure, and m is finite a.e.

The multiplicity function m is one of the parameters that determine a GMRA. As we will see
in Section 4, the other parameter is a “filter” that shows how the operator J interacts with dila-
tion. Classical filters were periodic functions h and g in L2(Rd) that described inverse dilates of
Fourier transforms of bases of V1 in terms of those of V0. Starting with an MRA in L2(Rd),
such functions could be shown to satisfy certain orthogonality relations. Mallat, Meyer and
Daubechies [22,23,15] turned this process around by using functions h and g satisfying orthog-
onality together with additional low-pass and non-vanishing conditions to construct MRAs and
wavelets. Lawton [20] and Bratteli and Jorgensen [12] were able to relax the non-vanishing
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condition by allowing Parseval frames in place of orthonormal bases, and Baggett, Courter, Jor-
gensen, Merrill, Packer [1,3] generalized this work to the GMRA setting by replacing h and g

by matrix-valued functions H and G. In [11], Bratteli and Jorgensen related filters h and g to
Ruelle operators Sh and Sg , which satisfy relations similar to those of Cuntz operators, and can
be used to represent inverse dilations. This work was extended to generalized filters in [3] and
later [4].

In the next section, we recall the relationship between abstract GMRAs, multiplicity functions
and generalized filters. In particular, we describe conditions on a multiplicity function m and
a filter H that guarantee that they will produce a GMRA. It turns out that these conditions are
considerably more relaxed in an abstract Hilbert space than in L2(Rd). In Section 3 we describe a
construction procedure that produces an abstract GMRA from any m and H meeting the required
conditions. This construction gives an explicit realization of the abstract direct limit GMRAs built
in [4]. While the procedure relies on first choosing a filter G complementary to H , we show in
Section 4 that the equivalence between GMRAs does not depend on the choice of G. Thus, the
classifying set described there depends only on the pair m and H . In this section, we also give a
necessary and sufficient condition on the equivalence class of a filter so that SH is a pure isometry
and thus associated with a GMRA, in the case of a finite multiplicity function. We conclude in
Section 5 with a variety of examples that illustrate our main theorems, including an example of
a GMRA where the translation group is not isomorphic to Z

d .

2. GMRAs, multiplicity functions and filters

Let H be an abstract, separable Hilbert space, equipped with operators πγ and δ satisfying
Eq. (1).

Definition 1. A collection {Vj }∞−∞ of closed subspaces of H is called a generalized multireso-
lution analysis (GMRA) relative to π and δ if

(1) Vj ⊆ Vj+1 for all j.

(2) Vj+1 = δ(Vj ) for all j.

(3)
⋂

Vj = {0}, and
⋃

Vj is dense in H.

(4) V0 is invariant under the representation π.

The subspace V0 is called the core subspace of the GMRA {Vj }.

Let {Vj } be a GMRA in a Hilbert space H. For each j , write Wj for the orthogonal com-
plement to Vj in Vj+1. It follows that H =⊕∞

j=−∞ Wj . Also, for each j � 0, Wj is an
invariant subspace for the representation π. We apply Stone’s Theorem on unitary representa-
tions of abelian groups to the subrepresentations of π acting in V0 and W0. Accordingly, there
exists a finite, Borel measure μ (unique up to equivalence of measures) on Γ̂ , Borel subsets
σ1 ⊇ σ2 ⊇ · · · of Γ̂ (unique up to sets of μ measure 0), and a (not necessarily unique) unitary
operator J : V0 →⊕i L

2(σi,μ) satisfying

[
J
(
πγ (f )

)]
(ω) = ω(γ )

[
J (f )
]
(ω)
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for all γ ∈ Γ , all f ∈ V0, and μ almost all ω ∈ Γ̂ . We write m for the function on Γ̂ given by
m(ω) =∑i χσi

(ω), and call it the multiplicity function associated to the representation π |V0 .
The GMRA {Vj } is an MRA if and only if m ≡ 1.

Analogously, there exists a finite, Borel measure μ̃, Borel subsets σ̃k , and an operator
J̃ : W0 →⊕k L2(̃σk, μ̃) satisfying

[
J̃
(
πγ (f )

)]
(ω) = ω(γ )

[
J̃ (f )
]
(ω)

for all γ ∈ Γ , f ∈ W0, and μ̃ almost all ω. We write m̃ for the function on Γ̂ given by m̃(ω) =∑
k χσ̃k

(ω), and call it the multiplicity function associated to the representation π |W0 .
In this paper, we will assume that the measures μ and μ̃ are absolutely continuous with re-

spect to Haar measure, and thus take μ and μ̃ to be the restrictions of Haar measure to the
subsets σ1 and σ̃1, respectively. We also assume that the multiplicity function m associated to the
representation π |V0 is finite almost everywhere.

Let α∗ be the dual endomorphism of Γ̂ onto itself defined by [α∗(ω)](γ ) = ω(α(γ )), and
note that the kernel of α∗ contains exactly N elements and that α∗ is ergodic with respect to
the Haar measure μ on Γ̂ . Indeed, suppose that for some γ ∈ Γ and some n > 0, we have
γ ◦ (α∗)n = γ . Since the characters of Γ separate the points of Γ , it follows that αnγ = γ ,
and hence γ ∈ ⋂αnΓ = {0}. That is, the trivial character is the only γ ∈ Γ that satisfies
γ ◦ (α∗)n = γ for some n > 0, and it follows that any function f ∈ L2(Γ̂ ) that satisfies
f ◦ α∗ = f must be a constant function. The last statement is equivalent to the definition of
the ergodicity of α∗.

Using α∗ to relate the representations π |V1 and π |V0 , it is shown in [6] and more generally
in [4] that multiplicity functions for a GMRA must satisfy the following consistency equation:

m(ω) + m̃(ω) =
∑

α∗(ζ )=ω

m(ζ ). (2)

It follows, since the function m is finite a.e., that the sets σi and σ̃k are completely determined
by the multiplicity function m. It also follows that a multiplicity function m associated with a
GMRA must satisfy the consistency inequality:

m(ω) �
∑

α∗(ζ )=ω

m(ζ ). (3)

We will see in the next section that the consistency inequality is a sufficient as well as neces-
sary condition for a function m : Γ̂ → {0,1,2, . . .} to be a multiplicity function associated to an
abstract GMRA. Accordingly, we make the following definition.

Definition 2. A multiplicity function is a Borel function m : Γ̂ → {0,1,2, . . .} that satisfies the
consistency inequality (3).

In contrast, Bownik, Rzeszotnik and Speegle [10] and Baggett and Merrill [7] showed that
an additional technical condition related to dilates of the translates of the support of m is re-
quired for m to be a multiplicity function for a GMRA in L2(Rd). We will need the following
observation about multiplicity functions.
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Proposition 3. Suppose m : Γ̂ → {0,1,2, . . .} satisfies the consistency inequality. If m is not
identically 0, then there exists a set F of positive measure in Γ̂ such that

m(ω) <
∑

α∗(ζ )=ω

m(ζ )

for all ω ∈ F. That is, the consistency inequality is a strict inequality on a set of positive measure.

Proof. Suppose

m(ω) =
∑

α∗(ζ )=ω

m(ζ )

for almost all ω ∈ Γ̂ . It follows directly by induction that

m(ω) =
∑

α∗n(ζ )=ω

m(ζ )

for almost all ω. Let k be a positive integer for which there exists a set E ⊆ Γ̂ of positive
measure such that m(ω) � k for all ω ∈ E. Choose n such that Nn > k. Then, for almost every
ω ∈ α∗−n(E), we have ∑

ζ∈ker(α∗n)

m(ωζ ) = m
(
α∗n

(ω)
)
� k,

implying that there exists some ζ ∈ ker(α∗n), and a subset E′ ⊆ α∗−n(E) of positive measure,
such that m(ωζ) = 0 for all ω ∈ E′. Hence, m(ω) = 0 on a set F of positive measure. But, from
the equation

m
(
α∗(ω)

)= ∑
α∗(ζ )=1

m(ωζ),

it follows that the sequence {m(α∗n(ω))} is nondecreasing. Because α∗ is ergodic, we must
have that the sequence {α∗n(ω)} intersects the set F infinitely often for almost all ω. Hence
m(ω) = 0 a.e. �

The other ingredients we will need for our GMRA construction are filters, which are defined
in terms of a multiplicity function m as follows:

Definition 4. Let m be a multiplicity function, and write σi = {ω: m(ω) � i}. Set

m̃(ω) =
∑

α∗(ζ )=ω

m(ζ ) − m(ω),

and set σ̃k = {ω: m̃(ω) � k}. Let H = [hi,j ] and G = [gk,j ] be (possibly infinite) matrices of
Borel, complex-valued functions on Γ̂ such that for every j , hi,j and gk,j are supported in σj .

Suppose further that H and G satisfy the following “filter equations”:
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∑
α∗(ζ )=ω

∑
j

hi,j (ζ )hi′,j (ζ ) = Nδi,i′χσi
(ω), (4)

∑
α∗(ζ )=ω

∑
j

gk,j (ζ )gk′,j (ζ ) = Nδk,k′χσ̃k
(ω), (5)

and ∑
α∗(ζ )=ω

∑
j

gk,j (ζ )hi,j (ζ ) = 0. (6)

Then H is called a filter relative to m and α∗, and G is called a complementary filter to H .

We note that it will sometimes be useful to consider filters and complementary filters to be
matrix valued functions on Γ̂ rather than a matrix of complex valued functions. It is then a
consequence of the definition above that the nonzero portion of the matrix H(ω) is contained
in the upper left block of dimensions m(α∗(ω)) × m(ω), while the nonzero portion of G(ω) is
contained in the upper left block of dimensions m̃(α∗(ω)) × m(ω).

Given a filter H relative to m and α∗, we may define a “Ruelle” operator SH on
⊕

i L
2(σi)

by [
SH (f )

]
(ω) = Ht(ω)f

(
α∗(ω)

)
.

Similarly, a complementary filter G defines a Ruelle operator SG from
⊕

i L
2(̃σi) to

⊕
i L

2(σi)

by [
SG(f )

]
(ω) = Gt(ω)f

(
α∗(ω)

)
.

The filter equations satisfied by H and G translate to the following Cuntz-like conditions for the
Ruelle operators (see [3,4]):

Lemma 5. If H is a filter relative to m and α∗, and G is a complementary filter to H , then the
Ruelle operators they define satisfy

(1) S∗
H SH = I , S∗

GSG = Ĩ ,
(2) S∗

H SG = 0, and
(3) SH S∗

H + SGS∗
G = I ,

where I is the identity operator on
⊕

i L
2(σi,μ) and Ĩ is the identity operator on

⊕
k L2(̃σk, μ̃).

Filters, like multiplicity functions, arise naturally out of GMRAs. Let {Vj } be a GMRA (with
finite multiplicity function and associated measure absolutely continuous with respect to Haar),
and let μ, {σi}, J , μ̃, {̃σk}, and J̃ be as in the Stone’s Theorem discussion above. Write Ci for
the element of the direct sum space

⊕
j L2(σj ,μ) whose ith coordinate is χσi

and whose other

coordinates are 0, and C̃k for the element in
⊕

l L
2(̃σl, μ̃) whose kth coordinate is χσ̃k

and
whose other coordinates are 0. Let

⊕
j hi,j be the element J (δ−1(J−1(Ci))) and

⊕
j gk,j be the

element J (δ−1(J̃−1(C̃k))), both in
⊕

L2(σj ,μ). It was shown in [2] that the matrix H = [hi,j ]
j
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is then a filter relative to m and α∗, and the matrix G = [gk,j ] is a complementary filter to H .
We call these filters constructed from a GMRA, and note that they are not unique, but rather
depend on the choice of the maps J and J̃ . The operators J ◦ δ−1 ◦ J−1 and J ◦ δ−1 ◦ J̃−1

are the corresponding Ruelle operators SH and SG respectively. It follows directly from their
definitions that SH and SG are isometries, and the GMRA requirement that

⋂
Vj = {0} implies

that SH = J ◦ δ−1 ◦ J−1 is a pure isometry.
Just as with multiplicity functions, this necessary condition on a filter to be associated with

a GMRA turns out to be sufficient as well. In Theorem 5 of [4], it is shown that if SH is a pure
isometry on a Hilbert space

⊕
L2(σi), then it is possible to construct a generalized multiresolu-

tion analysis via a direct limit process. Our construction in the next section will give a concrete
realization under the same hypotheses. Again, as with multiplicity functions, we see that this
necessary and sufficient condition on the filter H is much weaker than what is required for a
filter to be associated with a GMRA in L2(Rd). For example, in that context, the “refinement
equation”,

φ̂(ω) = 1√|detA|H
(
At−1

ω
)
φ̂
(
At−1

ω
)
, (7)

suggests some sort of convergence of the infinite product
∏∞

j=1
1√|detA|H((At )−jω), which in

turn requires that the filter H satisfies some low-pass condition of being close to
√|detA| times

a partial identity near the origin [3,4]. Theorems from [2,5] indicate that in the abstract setting,
a much weaker condition is sufficient to guarantee that SH is a pure isometry. In the case where
the matrix H is 1 × 1, the simple condition that |H(ω)| �= 1 on a set of positive measure is
sufficient to show that SH is a pure isometry [11,5]. In particular, filters traditionally labeled
“high-pass” can be used as H . Proposition 19 in Section 4 of this paper gives a new, more
general result of this type.

3. Explicit construction of GMRAs on abstract Hilbert spaces

Let m be a multiplicity function on Γ̂ , as in Definition 2 and let H be a filter relative to m

and α∗. Using Proposition 3, define

m̃(ω) =
∑

α∗(ζ )=ω

m(ζ ) − m(ω), (8)

and define the sets {σi} and {̃σk} as in the preceding section. As is shown in [1], given a filter
H relative to m and α∗, there always exists a complementary filter G. For the purposes of this
construction, let G be any filter complementary to H .

Because a J map guaranteed by Stone’s Theorem takes the core subspace V0 of any GMRA to⊕
L2(σi), this direct sum of L2 spaces is a natural candidate for the core subspace of an abstract

GMRA built out of a multiplicity function and a filter. The group Γ acts on this space in a natural
way via multiplication by characters. Similarly, the space

⊕
L2(̃σk) is an obvious candidate for

the abstract W0 = V1 
 V0, and the relationships J ◦ δ−1 ◦ J−1 = SH and J ◦ δ−1 ◦ J̃−1 = SG

suggest that the Ruelle operators SH and SG provide natural abstract inverse dilations on these
spaces. Thus the main task remaining in building a GMRA given m and H is to describe positive
dilates of W0; such subspaces could then be used to fill out the rest of the Hilbert space.
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If the group Γ = Z
d , then embedding Γ̂ = T

d as [− 1
2 , 1

2 ]d in R
d provides us with a sim-

ple candidate for the dilate of our constructed W0 =⊕L2(̃σk). Since in this case, α is an
isomorphism of Z

d , we must have α(n) = An, for a matrix A. We define positive dilations
Dj :⊕L2(̃σk) →⊕L2(At σ̃k) by

Dj

(⊕
k

fk(ω)

)
=
⊕

k

1√|detA|j
fk

((
At
)−j

ω
)
.

For more general Γ , we will use an abstract construction to define the positive dilation D in
terms of a cross section for the map α∗. Just as in the case of Γ = Z

d , our dilated space will be a
direct sum of L2 spaces such that the map f → √

Nf ◦α∗ determines an isometry of the dilated
space onto the original one.

Let c be a regular Borel section for the map α∗; i.e., c is a Borel map from Γ̂ ≡ α∗(Γ̂ ) ≡
Γ̂ /ker(α∗) into Γ̂ , for which α∗(c(ω)) = ω for all ω ∈ Γ̂ . (See, e.g. [21, Lemma 1.1].) Define
τ : Γ̂ → ker(α∗) by

τ(ω) = c
(
α∗(ω)

)
ω−1.

For example, in the simple case associated with dilation by 2 in L2(R), where Γ̂ = T ≡ [− 1
2 , 1

2 ),
with α∗(ω) = 2ω, we can take c(ω) = ω

2 . Thus, here

τ(ω) =
{

0 if ω ∈ [− 1
4 , 1

4 ),

1
2 otherwise.

(9)

Now, let ν be a finite Borel measure on Γ̂ . Let E be a Borel subset of Γ̂ , let ζ be an element
of the kernel of α∗, and set

Eζ = {ω ∈ E: τ(ω) = ζ
}
.

Proposition 6. The set E is the disjoint union
⋃

ζ Eζ , and α∗ is 1–1 on each Eζ into Γ̂ .

Proof. The first statement is clear.
For ω ∈ Eζ we have

c
(
α∗(ω)

)= τ(ω)ω = ζω,

which shows that α∗ must be 1–1 on Eζ . �
Now let E1,E2, . . . be a (countable) collection of Borel subsets of Γ̂ . For each i let νi be the

restriction to Ei of the measure ν. Write Ei,ζ for [Ei]ζ , and let νi,ζ be the restriction of νi to the
subset Ei,ζ of Ei . Write K =⊕i L

2(Ei, νi). For each ζ ∈ ker(α∗), define E′
i,ζ = α∗(Ei,ζ ), and

set ν′
i,ζ equal to the measure Nα∗∗(νi,ζ ) that is defined on E′

i,ζ by

ν′ (F ) = Nνi,ζ

(
α∗−1

(F )
)
.
i,ζ
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For example, in the simple setting described by Eq. (9), if we take E1 = [− 3
8 , 3

8 ) and E2 = [ 1
8 , 1

2 ),
then

E1,0 =
[
−1

4
,

1

4

)
, E1, 1

2
=
[
−3

8
,−1

4

)
∪
[

1

4
,

3

8

)
,

E2,0 =
[

1

8
,

1

4

)
, E2, 1

2
=
[

1

4
,

1

2

)
, (10)

so that

E′
1,0 =

[
−1

2
,

1

2

)
, E′

1, 1
2

=
[
−1

2
,−1

4

)
∪
[

1

4
,

1

2

)
,

E′
2,0 =

[
1

4
,

1

2

)
, E′

2, 1
2

=
[
−1

2
,0

)
.

The measure ν′
i,ζ here is just Haar measure restricted to E′

i,ζ .
Using our newly defined sets and measures, we let

K′ =
⊕
i,ζ

L2(E′
i,ζ , ν

′
i,ζ

)
.

Proposition 7. For each f ∈ K, set D(f ) equal to the element of K′ given by

[
D(f )

]
i,ζ

(ω) = 1√
N

fi

(
ζ−1c(ω)

)
.

Then the operator D is an isometry of K onto K′.

Proof.

∥∥D(f )
∥∥2 =

∑
i

∑
ζ

∫
E′

i,ζ

∣∣[D(f )
]
i,ζ

(ω)
∣∣2 dν′

i,ζ (ω)

= 1

N

∑
i

∑
ζ

∫
E′

i,ζ

∣∣fi

(
ζ−1c(ω)

)∣∣2 dν′
i,ζ (ω)

=
∑

i

∑
ζ

∫
Ei,ζ

∣∣fi

(
ζ−1c
(
α∗(η)

))∣∣2 dνi,ζ (η)

=
∑

i

∑
ζ

∫
Ei,ζ

∣∣fi

(
ζ−1τ(η)η

)∣∣2 dνi,ζ (η)

=
∑

i

∑
ζ

∫
E

∣∣fi(η)
∣∣2 dνi,ζ (η)
i,ζ



L.W. Baggett et al. / Journal of Functional Analysis 258 (2010) 4210–4228 4219
=
∑

i

∫
Ei

∣∣fi(η)
∣∣2 dνi(η)

= ‖f ‖2,

where the second to last step is justified because, for η ∈ Ei,ζ , we have τ(η) = ζ . Thus, D is an
isometry.

To see that D is onto K′, it suffices to note that the inverse of D is given by

[
D−1(f )

]
i
(ω) = √

Nfi,τ(ω)

(
α∗(ω)

)
. �

We will refer to the space K′ = D(K) as a dilation by α∗ of K. Note that this general definition
of D is consistent with the definition given at the beginning of this section for the special case of
Γ = Z

d . For example, in the situation defined by Eq. (10), we can see this equivalence by using
integer translation in R to identify L2([− 1

2 , 1
2 )) ⊕ L2([− 1

2 ,− 1
4 ) ∪ [ 1

4 , 1
2 )) with L2([− 3

4 , 3
4 )) and

L2([ 1
4 , 1

2 )) ⊕ L2([− 1
2 ,0)) with L2([ 1

4 ,1)).
We are now ready to construct explicitly a GMRA from the parameters m, H , and G.

Theorem 8. Suppose m : Γ̂ → {0,1,2, . . .} is a Borel function that satisfies the consistency
inequality, and that H = [hi,j ] is a filter relative to m and α∗ such that the Ruelle operator
SH is a pure isometry on

⊕
i L

2(σi). Let m̃ be defined from m by the consistency equation
(as in Eq. (8)), and let G be a complementary filter to H . Define V0 =⊕i L

2(σi) and W0 =⊕
k L2(̃σk). For n � 1, inductively set Wn = D(Wn−1), and set H = V0 ⊕⊕∞

n=0 Wn. Define a
representation π of Γ , acting in H, by

[
πγ (f )

]
(ω) = ω(γ )f (ω).

Finally, define an operator T on H by

[
T (f )

]
a

=
{

SH (fV0) + SG(fW0), a = V0,

D−1(fWn+1), a = Wn, n � 0,
(11)

where we represent an element f of H by {fV0, fW0, fW1, . . .}. Then

(1) T is a unitary operator on H.
(2) T πγ T −1 = πα(γ ) for all γ ∈ Γ .
(3) If Vj is defined to be T −j (V0), then the collection {Vj } is a GMRA relative to π and δ, where

δ = T −1.

(4) The multiplicity function associated to the core subspace V0 is the given function m, and the
given H is a filter constructed from the GMRA {Vj }.

Proof. To prove the first claim, note that by Proposition 7, D−1 is an isometry from Wn+1
onto Wn. By Lemma 5, we also have that the definition of T above gives an isometry from
V0 ⊕ W0 onto V0. The second claim follows immediately from the definitions, since the operators
SH , SG and D−1 all change the argument of the function from ω to α∗(ω).
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Next, we show that the collection {Vj } is a GMRA. The fact that Vj ⊆ Vj+1 follows from
T (V0) ⊂ V0, which is immediate from the definition of T . That Vj+1 = δ(Vj ) follows im-
mediately from the definition of δ = T −1. The trivial intersection property follows from our
assumption that SH is a pure isometry, and the dense union from the fact noted in the previous
paragraph that T −1 V0 = V0 ⊕ W0 and T −1 Wn = Wn+1.

As a component of the direct sum space, V0 is clearly invariant under the multiplication op-
erators ω(γ ) that define the representation π . The given function m is clearly the multiplicity
function of that representation. To establish that H is a corresponding filter, we note that we can
take J to be the identity for this V0, and calculate

Jδ−1J−1(Ci)(ω) = T (Ci)(ω)

= SH (Ci)(ω)

=
⊕

j

hi,j (ω)χσi

(
α∗(ω)

)
=
⊕

j

hi,j (ω),

where the last equality follows from the fact that by the filter equation, hi,j is supported on
α∗−1(σi). �
Remark 9. We will denote the GMRA {Vj } constructed above by {V m,H,G

j } and refer to it as the
canonical GMRA having these parameters.

In Section 5 we will construct canonical GMRAs related to classical examples, as well as new
ones. First, we establish in the next section conditions under which two GMRAs are the same.
While our construction procedure requires the choice of a complementary filter G, we will see
that the equivalence classes depend only on the two parameters m and H .

4. A classifying set for GMRAs

Let {Vj } be a GMRA in a Hilbert space H, relative to a representation π of Γ and a unitary
operator δ, and let {V ′

j } be a GMRA in a Hilbert space H′, relative to a representation π ′ of Γ

and a unitary operator δ′.

Definition 10. We say that the GMRAs {Vj } and {V ′
j } are equivalent if there exists a unitary

operator U : H → H′ that satisfies:

(1) U(Vj ) = V ′
j for all j.

(2) U ◦ πγ = π ′
γ ◦ U for all γ ∈ Γ.

(3) U ◦ δ = δ′ ◦ U.

For classical examples in L2(Rd), the Fourier transform F gives an equivalence between any
GMRA {Vj } and {V̂j }. Further, if an operator U gives an equivalence between {Vj } and {V ′

j },
two GMRAs for dilation by A and translation by Z

d in L2(Rd), then Û = F ◦ U ◦ F −1 is
multiplication by a function u with absolute value 1, and such that u(A∗jω) = u(ω) for all
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integers j [8]. Thus equivalence between GMRAs for the same dilation in L2(Rd) generalizes
the notion of different MSF wavelets attached to the same wavelet set.

Recall that we consider only GMRAs with a finite multiplicity function m and with the asso-
ciated measure μ absolutely continuous with respect to Haar measure. Our first aim is to prove
that every such GMRA is equivalent to one of the canonical GMRAs constructed in the preced-
ing section. We will then describe the equivalence relation among these GMRAs in terms of the
parameters m, H and G. We will need the following lemma.

Lemma 11. The GMRAs {Vj } and {V ′
j } are equivalent if and only if there exists a unitary oper-

ator P mapping V0 onto V ′
0 that satisfies:

(1) P ◦ πγ = π ′
γ ◦ P for all γ ∈ Γ.

(2) P ◦ δ−1 = δ′−1 ◦ P.

Proof. We first assume that the conditions above are satisfied and show that {Vj } and {V ′
j } are

equivalent. For each n � 0, define an operator Qn : Wn → W ′
n by

Qn = δ′n+1 ◦ P ◦ δ−(n+1).

Now, define U = P ⊕⊕∞
n=0 Qn on H = V0 ⊕⊕∞

n=0 Wn. One checks directly that U satisfies
the required conditions.

For the converse, assume that {Vj } and {V ′
j } are equivalent, with U : H → H′ implement-

ing the equivalence. Define P = U |V0 . By the definition of equivalence, P maps V0 to V ′
0, and

conditions (1) and (2) follow. �
Theorem 12. Let {Vj } be a GMRA. Let m be its (finite) associated multiplicity function, and let
H = [hi,j ] be a filter constructed from the GMRA using the map J . Let G be a complementary

filter to H . Then the GMRA {Vj } is equivalent to the canonical GMRA {V m,H,G
j }.

Proof. Define P : V0 →⊕L2(σi) by P = J . Condition (1) of Lemma 11 follows immediately.
The fact that J ◦ δ−1 ◦ J−1 = SH proves the second condition of that lemma. �
Theorem 13. The canonical GMRAs {V m,H,G

j } and {V m′,H ′,G′
j } are equivalent if and only if

m = m′, and there exists a matrix-valued function A on Γ̂ such that

(1) A(ω) = (A1(ω) 0
0 0

)
, where A1(ω) is a unitary matrix of dimension m(ω).

(2) H(ω)At (ω) = At(α∗(ω))H ′(ω).

Proof. Suppose first that m = m′ and that there exists a matrix-valued function A satisfying the
conditions. Let τr be the subset of Γ̂ on which m(ω) = m′(ω) = r . Then both subspaces V

m,H,G
0

and V
m′,H ′,G′
0 are equal to

⊕
L2(σi) ≡

⊕
L2(τr ,C

r
)
.

i r
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Define P : V m,H,G
0 → V

m′,H ′,G′
0 by [P(f )](ω) = A(ω)f (ω). It follows directly that P satisfies

the conditions of Lemma 11, and hence {V m,H,G
j } and {V m′,H ′,G′

j } are equivalent.
Conversely, suppose an operator P exists and satisfies the conditions of Lemma 11. The first

condition on P implies that the two representations of Γ on V
m,H,G
0 and V

m′,H ′,G′
0 are unitarily

equivalent, whence m must equal m′, and V
m,H,G
0 = V

m′,H ′,G′
0 =⊕i L

2(σi) =⊕r L2(τr ,C
r ).

It is known (e.g. [8]) that any unitary operator P on the direct sum of vector-valued L2 spaces
that commutes with all the multiplication operators γ (ω), is itself a multiplication operator of
the form

[
P(f )

]
(ω) = A(ω)f (ω),

where A(ω) = (A1(ω) 0
0 0

)
, and A1(ω) is a unitary matrix whose dimension is r = m(ω) for ω ∈ τr .

The second condition of Lemma 11 then implies that A satisfies condition (2) of the theorem. �
Corollary 14. Let m be a multiplicity function and let H be a filter relative to m and α∗ for which
SH is a pure isometry. If G and G′ are any two complementary filters to H , then the GMRAs

{V m,H,G
j } and {V m,H,G′

j } are equivalent.

The preceding theorem introduces a notion of equivalence among filters that we will use to
build a set of classifying parameters for the equivalence classes of GMRAs. In the following
definition, we use our knowledge of the form of A to rewrite the equivalence using the conjugate
transpose A∗.

Definition 15. Let m be a multiplicity function. Filters H and H ′ relative to m and α∗ are called
equivalent if there exists a matrix-valued function A on Γ̂ , with A(ω) = (A1(ω) 0

0 0

)
, where A1(ω)

is a unitary matrix of dimension m(ω), and such that

H ′(ω) = A
(
α∗(ω)

)
H(ω)A∗(ω)

for almost all ω ∈ Γ̂ .

Remark 16. If H and H ′ are two filters constructed from the same GMRA using different Stone’s
Theorem operators J and J ′, then H and H ′ are equivalent according to this definition. Here the
matrix-valued function A comes from the multiplication operator J ′J−1.

Lemma 17. Let H be a filter relative to m and α∗, and let A be a matrix-valued function of the
form described in the preceding theorem. Define the matrix-valued function H ′ by

H ′(ω) = A
(
α∗(ω)

)
H(ω)A∗(ω).

Then H ′ is a filter relative to m and α∗, i.e., H ′ satisfies the filter equation.

Proof. We note that if we write H1(ω) for the upper left m(α∗(ω)) × m(ω) block of H(ω), and
let Λ(ω) be N times the m(ω) × m(ω) identity, then the filter equation (4) can be rewritten as
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∑
α∗(ζ )=ω

H1(ζ )H ∗
1 (ζ ) = Λ(ω). (12)

We must show that if H satisfies Eq. (12), then so does H ′. We have

∑
α∗(ζ )=ω

H ′
1(ζ )H ′∗

1(ζ ) =
∑

α∗(ζ )=ω

A1(ω)H1(ζ )A∗
1(ζ )A1(ζ )H ∗

1 (ζ )A∗
1(ω)

= A1(ω)Λ(ω)A∗
1(ω)

= Λ(ω). �
Let H be a filter relative to m and α∗. In [2] it was shown that the operator SH fails to be

a pure isometry if and only if it has an eigenvector, i.e., if and only if there exists an element
F ∈⊕L2(σi) and a complex number λ for which Ht(ω)F (α∗(ω)) = λF(ω), where |λ| = 1 =
‖F(ω)‖ for almost all ω. Motivated by this result, we make the following definition:

Definition 18. A filter H is called an eigenfilter if there exists a constant λ with |λ| = 1 such
that for almost all ω, H1,1(ω) = λ and H1,j (ω) = 0 for j > 1.

Using this definition, we have the following restatement of the result from [2]:

Proposition 19. SH fails to be a pure isometry if and only if H is equivalent to an eigenfilter.

Proof. If there exists a matrix-valued function A such that

H ′(ω)A(ω) = A
(
α∗(ω)

)
H(ω),

where H ′(ω) is an eigenfilter, then, computing the first rows of both sides, we see that the first
row of A is the desired eigenvector F .

Conversely, if SH has an eigenvector F , build a unitary-valued matrix A(ω) having F(ω) as
its first row. Set H ′(ω) = A(α∗(ω))H(ω)A∗(ω). By the previous lemma, H ′ is a filter relative
to m and α∗. Moreover, one can see that H ′

1,1 = λ. Because H ′ is a filter, it follows that the
elements H ′

1,j (ω) are all 0 for j > 1. Hence, H ′ has the desired form. �
Now, let S be the set of all pairs (m,H), where m is a multiplicity function and H is a filter

relative to m and α∗. Let S0 be the subset of S comprising those pairs (m,H) for which H is
equivalent to an eigenfilter, and let S1 = S \ S0.

Finally let E = S1/ ≡ be the set of equivalence classes of S1 with respect to the equivalence
relation (m1,H1) ≡ (m2,H2) if m1 = m2 and H1 is equivalent to H2.

Theorem 20. The set E is a classifying set for the equivalence classes of GMRAs (with finite
multiplicity functions and associated measures absolutely continuous with respect to Haar mea-
sure), in the sense that there is a 1–1 correspondence between E and the classes of GMRAs, and
this correspondence can be described explicitly.
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Proof. Given an element s ∈ E, let (m,H) be a representative of the equivalence class s. Let
G be a filter complementary to H , and define κ(s) to be the equivalence class of the GMRA
{V m,H,G}. By Theorem 13, the map κ is both well defined and one-to-one, and by Theorem 12,
it is onto. �
5. Examples

We will now use the technique outlined in Section 3 to construct examples of canonical
GMRAs, and apply the ideas of Section 4 to discuss their equivalence. We work first in the
classical setting of MRAs (so m ≡ 1) with single wavelets (so m̃ ≡ 1) for dilation by 2 in L2(R).
Since m is determined for MRAs, their equivalence depends only on the filter H .

Example 21. Any MRA for dilation by 2 in L2(R) with m = m̃ ≡ 1 has canonical Hilbert space

L2(T) ⊕ L2(T) ⊕
( ∞⊕

j=1

L2(2j
T
))= V

m,H,G
0 ⊕ W

m,H,G
0 ⊕

( ∞⊕
j=1

W
m,H,G
j

)
(13)

with πn(
⊕

fl) = en · fl , where en(x) = e2πinx , and

δ−1

(
fV0 ⊕ fW0 ⊕

( ∞⊕
j=1

fWj

))
(ω) = (h(ω)fV0(2ω) + g(ω)fW0(2ω)

)⊕ √
2fW1(2ω)

⊕
( ∞⊕

j=2

√
2fWj

(2ω)

)
. (14)

Equivalence for two different MRAs with single wavelets is equivalent to the existence of a pe-
riod 1 function a such that |a(ω)| = 1 and h′(ω) = a(2ω)h(ω)a(ω), where h and h′ are filters
constructed from the two MRAs. Thus, in particular, equivalence requires that |h| = |h′|. How-
ever, this is not sufficient, as we will see below. Determining which filters give equivalent MRAs
requires determining exactly which functions on the 1-torus are coboundaries where cohomolog-
ical equivalence is given by Definition 15.

For the Shannon MRA, with V̂0 = L2([− 1
2 , 1

2 ]), we have h = √
2χ[− 1

4 , 1
4 ] and g = √

2χ±[ 1
4 , 1

2 ]
in the above formula. By mapping W

m,H,G
j �→ L2(±2j [ 1

2 ,1]), we can map this canonical GMRA
to the Fourier transform of the Shannon GMRA.

For the Haar MRA, with V0 spanned by translates of χ[0,1], we have h = 1√
2
(1 + e−1), g =

1√
2
(e−1 − 1) in the above formula. Here there is no obvious mapping between the canonical

GMRA and either the original or its Fourier transform. However, we know all three are equivalent
by Theorem 12.

In either the Shannon or Haar examples, we can switch the roles of h and g to get a new MRA
that cannot be realized in L2(R) (since iterating the refinement equation (7) leads to a scaling
function that must be identically 0). The canonical Hilbert space will still be given by Eq. (13),
and the operators πn will be as above. However, in the dilation formula (14), we will now have h

given by the old g, and g by the old h. Proposition 19 shows that we still have Sh a pure isometry,
so that the canonical construction does produce a GMRA. Looking at the V

m,h,g and W
m,h,g that
−j −j
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result in the case of the reversed Shannon GMRA shows how this example differs from Shannon
MRA itself:

δ−1 : V m,h,g

0 = L2
([

−1

2
,

1

2

])
�→ L2

(
±
[

1

4
,

1

2

])
�→ L2

(
±
[

3

8
,

1

2

])
�→ · · · ,

δ−1 : Wm,h,g

0 = L2
([

−1

2
,

1

2

])
�→ L2

([
−1

4
,

1

4

])
�→ L2

(
±
[

1

4
,

3

8

])
�→ · · · .

Since the absolute values of the filters in the three examples discussed here are all different
on sets of positive measure, the three are seen to be inequivalent MRAs. To see that for MRAs
with wavelets, the filters having equal absolute value almost everywhere is not sufficient for
equivalence, consider the MRA built from h′ = −h, where h is the filter for the Haar example.
A simple Fourier analysis argument shows that there is no solution to h′(ω) = a(2ω)h(ω)a(ω),
so this MRA must be inequivalent to the Haar MRA. We note that it has the same canonical
Hilbert space as Haar, and the same subspaces Vj , but its dilation on V0 is the negative of the
Haar dilation. This negative sign causes problems in the iteration of the refinement equation, so
this example cannot be realized in L2(R).

A fourth example in this setting begins with the Cohen filters h = 1√
2
(1 + e−3) and g =

1√
2
(1 − e−3). The infinite product construction which follows from the refinement equation

in L2(R) yields the functions φ = 1
3χ[0,3) and ψ = 1

3 (χ[0, 3
2 )

− χ[ 3
2 ,3)

), which fail to be an or-
thonormal scaling function and orthonormal wavelet, respectively, since neither has orthonormal
translates. However, it can be shown that the negative dilate space (for dilation by 2) of the Cohen
Parseval wavelet coincides with that of the Haar orthonormal wavelet. Hence, the Cohen GMRA
equals the Haar MRA.

We may apply Theorem 8 to the Cohen filters and multiplicity functions m ≡ 1, m̃ ≡ 1. The
canonical Hilbert space will be that given by Eq. (13), on which the integers act by multiplication
by exponentials. We see that the spaces Vj for the canonical Cohen GMRA are the same as those
for the canonical Haar MRA whenever j � 0. However, since 1√

2
(1 + e−3) and 1√

2
(1 + e−1)

have different moduli, the two filters must be inequivalent. Therefore the two canonical GMRAs
must be inequivalent.

Lastly, we remark that while the Cohen wavelet ψ = 1
3 (χ[0, 3

2 )
− χ[ 3

2 ,3)
) is only a Parseval

wavelet in L2(R), the element (0, χ[− 1
2 , 1

2 )
,0,0,0, . . .) is an orthonormal wavelet for the canon-

ical Hilbert space (13), with respect to πn and δ defined by Eq. (14) using the Cohen filters.
Dutkay et al. [9,17] also produced an orthonormal wavelet from the Cohen filter, using a “super-
wavelet” construction. The associated GMRA in L2(R) ⊕ L2(R) ⊕ L2(R) can be seen to be
equivalent to our canonical Cohen GMRA by defining the map P in Lemma 11 in the natural
way to take the nth translate of the Dutkay scaling function to e2πinx in the canonical V0. Of
course, this example cannot be realized in L2(R).

Next, we consider two non-MRA examples for dilation by 2 in L2(R): the Journé GMRA, and
the example for the Journé multiplicity function with low-pass filter of rank a = 2 described in
[4, Example 13]. As is noted there, a GMRA cannot be constructed for this second example using
the infinite product construction. However, by Proposition 19, the construction of this paper can
be carried out to give such a GMRA.
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Example 22. Let m be the multiplicity function corresponding to the Journé wavelet:

m(x) =

⎧⎪⎨⎪⎩
2 if x ∈ [− 1

7 , 1
7 ),

1 if x ∈ ±[ 1
7 , 2

7 ) ∪ ±[ 3
7 , 1

2 ),

0 otherwise,

so σ1 = [− 1
2 ,− 3

7 ] ∪ [− 2
7 , 2

7 ] ∪ [ 3
7 , 1

2 ] and σ2 = [− 1
7 , 1

7 ]. Since we know the Journé GMRA has
an associated single orthonormal wavelet, m̃ ≡ 1.

Filters that give rise to the Journé wavelet via the infinite product construction are described
in [13,1,3]. In particular, we may take

H =
(√

2χ[− 2
7 ,− 1

4 ]∪[− 1
7 , 1

7 )∪[ 1
4 , 2

7 ] 0√
2χ[− 1

2 ,− 3
7 ]∪[ 3

7 , 1
2 ] 0

)

and

G = (√2χ[− 1
4 ,− 1

7 ]∪[ 1
7 , 1

4 ]
√

2χ[− 1
7 , 1

7 ]
)
.

Here V
m,H,G
0 = L2(σ1) ⊕ L2(σ2), and W

m,H,G
j = L2(2j

T), j � 0. This canonical GMRA can
be mapped to the usual Journé GMRA by integrally translating σ1 and σ2 to the scaling set to
form V0, and T ≡ [− 1

2 , 1
2 ] to the wavelet set to form W0.

In [4], an alternative filter H ′ for the same multiplicity function, but which satisfies the low-
pass condition of rank a = 2 is constructed:

h′
1,1 = √

2χ[− 2
7 ,− 1

4 )∪[− 1
7 , 1

7 )∪[ 1
4 , 2

7 )
, h′

1,2 = h′
2,1 = 0, and h′

2,2 = √
2χ[− 1

14 , 1
14 )

.

By partitioning R/Z as described in [13,1], we can build the following complementary filter G′:

g′
1,1 = √

2χ[− 1
2 ,− 3

7 )∪[− 1
4 ,− 1

7 )∪[ 1
7 , 1

4 )∪[ 3
7 , 1

2 )
, g′

1,2 = √
2χ[− 1

7 ,− 1
14 )∪[ 1

14 , 1
7 )

.

The spaces V
m,H ′,G′
0 and W

m,H ′,G′
j for j � 0 are the same as those for the canonical GMRA

corresponding to the standard Journé filters. However, the different filters in the rank 2 exam-
ple will change the dilation, and thus change the spaces V

m,H ′,G′
j and W

m,H ′,G′
j for j < 0.

For example, we have V
m,H ′,G′
−1 = L2([− 1

7 , 1
7 ] ∪ ±[ 1

4 , 2
7 ]) ⊕ L2([− 1

14 , 1
14 ]), while the standard

V
m,H,G
−1 = L2([− 1

7 , 1
7 ] ∪ ±[ 1

4 , 2
7 ] ∪ ±[− 3

7 , 1
2 ]) ⊕ 0. The fact that all the V

m,H ′,G′
−j allow nonzero

second components with support overlapping that of the first component suggests the impossibil-
ity of mapping the rank 2 example into L2(R) as we mapped the standard example. Indeed, since
iterating the refinement equation would lead to a scaling function with a degenerate multiplicity
function [4], the rank 2 example cannot be realized in L2(R). Thus, these two examples must not
be equivalent.

For our next example, we consider dilation by 3, both in L2(R) and in the Dutkay/Jorgensen
enlarged Cantor fractal space [16].
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Example 23. The MRA Haar 2-wavelet for dilation by 3 in L2(R) has canonical Hilbert space

L2(T) ⊕ (L2(T) ⊕ L2(T)
)⊕( ∞⊕

j=1

L2(3j
T
)⊕ L2(3j

T
))

.

The canonical δ−1 = Sh ⊕ (Sg1 ⊕ Sg2) ⊕ (
⊕∞

j=1 D−j ), where

h = 1√
3
(1 + e1 + e2), g1 = 1√

2
(e1 − e2) and g2 = 1√

6
(−2 + e1 + e2),

and D−j (f1 ⊕ f2)(ω) = √
3
j
(f1 ⊕ f2)(3jω).

The Cantor set MRA has the same canonical GMRA except with

h = 1√
2
(1 + e2), g1 = e1 and g2 = 1√

2
(1 − e2).

These two examples must be inequivalent since their h’s have different absolute values. The latter
cannot be realized in L2(R), since h(0) = √

2, so that the iterated refinement equation (7) would
again force the scaling function to be identically 0.

Our final example uses a group Γ different from Z
d .

Example 24. Let Γj =⊕∞
i=j [Z2]i =⊕∞

i=j {1,−1}i , embedded as a subgroup of D = Γ−∞ =⊕∞
i=−∞[Z2]i by Γj =⊕j−1

i=−∞{1}i ⊕⊕∞
i=j [Z2]i . Let α be defined on Γ0 by α(γ )n = γn−1 for

n > 0 and α(γ )0 = 1. Let H = l2(D), and let π be the restriction to Γ0 of the regular represen-
tation of D. Define S on D by [S(d)]n = dn−1, and note that S(γ ) ≡ α(γ ) for γ ∈ Γ0. Define δ

on H = l2(D) by [δ(f )](d) = f (S(d)), and note that δ−1πγ δ = πα(γ ).
We have Γj+1 ⊆ Γj , and

⋂∞
j=−∞ Γj = {eD}, where eD = (. . . , 1, 1, 1, . . .) denotes the

multiplicative identity element of D = Γ−∞, so that l2(Γj+1) ⊆ l2(Γj ) and
⋂∞

j=−∞ l2(Γj ) =
l2({eD}). If we let Vj = l2(Γ−j ), then {Vj } is almost a GMRA. It fails only because constant
multiples of the function χ{eD} belong to

⋂
Vj . We will make it into a GMRA by tensoring

it with the dilation by 2 Haar GMRA. It is known (as in [18]) that the tensor product of two
GMRAs gives a GMRA. By tensoring our almost GMRA with an actual one, we will preserve
all the properties of the almost GMRA, and eliminate the non-trivial intersection.

Accordingly, let Γ ′ = Z act in H′ = L2(R) by π ′
nf (x) = f (x − n), and let δ′f (x) =√

2f (2x). We have α′ acting on Γ ′ by α′(n) = 2n. Write {V ′
j } for the usual Haar GMRA that

results from taking V ′
0 to be the closed linear span of translates of χ[0,1]. Set H′′ = H ⊗ H′,

equipped with the representation π × π ′ of Γ ′′ = Γ0 × Γ ′ and the operator δ ⊗ δ′. We let
α′′ = α × α′ and note that α′′ ∗ acts on Γ̂ ′′ =∏∞

i=0[Z2]i × T by α′′ ∗((ω0,ω1,ω2, . . .) × x) =
(ω1,ω2, . . .) × 2x, where we parameterize T by [− 1

2 , 1
2 ). We have N = 4, and ker(α′′ ∗) =

({−1,1} ×∏∞
i=1[{1}]i ) × {0, 1

2 }. To build the dilation described in Section 3, we can take the
cross section c((ω0,ω1,ω2, . . .) × x) = (1,ω0,ω1, . . .) × x

2 . We have m ≡ 1 and m̃ ≡ 3, so
σ1 = σ̃1 = σ̃2 = σ̃3 =∏∞

i=0[Z2]i × T.
We define our filter H = h1 ⊗ h2, where h1 is the filter on

∏∞
i=0[Z2]i given by h1 =√

2χ{1} ×∏∞ [Z ] , and h2 is the low-pass filter for the Haar GMRA described in Example 21,

0 i=1 2 i
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that is, h2 = 1√
2
(1+e−1). For our filter complementary to H , we define g1 = √

2χ{−1}0×∏∞
i=1[Z2]i

and let g2 be the high-pass filter for the Haar GMRA, g2 = 1√
2
(e−1 − 1). We then take our com-

plementary filter G to be the matrix whose rows are h1 ⊗ g2, g1 ⊗ h2, and g1 ⊗ g2.
For an alternative GMRA, we can replace h1 by h′

1 = χ{1}0×∏∞
i=1[Z2]i − χ{−1}0×∏∞

i=1[Z2]i and
g1 by g′

1 = −χ{1}0×∏∞
i=1[Z2]i +χ{−1}0×∏∞

i=1[Z2]i . These could be viewed as more fractal-like when
combined with the h2 and g2 in the standard tensor product construction.
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