1,871 research outputs found

    Chains of rotational tori and filamentary structures close to high multiplicity periodic orbits in a 3D galactic potential

    Full text link
    This paper discusses phase space structures encountered in the neighborhood of periodic orbits with high order multiplicity in a 3D autonomous Hamiltonian system with a potential of galactic type. We consider 4D spaces of section and we use the method of color and rotation [Patsis and Zachilas 1994] in order to visualize them. As examples we use the case of two orbits, one 2-periodic and one 7-periodic. We investigate the structure of multiple tori around them in the 4D surface of section and in addition we study the orbital behavior in the neighborhood of the corresponding simple unstable periodic orbits. By considering initially a few consequents in the neighborhood of the orbits in both cases we find a structure in the space of section, which is in direct correspondence with what is observed in a resonance zone of a 2D autonomous Hamiltonian system. However, in our 3D case we have instead of stability islands rotational tori, while the chaotic zone connecting the points of the unstable periodic orbit is replaced by filaments extending in 4D following a smooth color variation. For more intersections, the consequents of the orbit which started in the neighborhood of the unstable periodic orbit, diffuse in phase space and form a cloud that occupies a large volume surrounding the region containing the rotational tori. In this cloud the colors of the points are mixed. The same structures have been observed in the neighborhood of all m-periodic orbits we have examined in the system. This indicates a generic behavior.Comment: 12 pages,22 figures, Accepted for publication in the International Journal of Bifurcation and Chao

    Chaotic and regular motion around generalized Kalnajs discs

    Full text link
    The motion of test particles in the gravitational fields generated by the first four members of the infinite family of generalized Kalnajs discs, is studied. In first instance, we analyze the stability of circular orbits under radial and vertical perturbations and describe the behavior of general equatorial orbits and so we find that radial stability and vertical instability dominate such disc models. Then we study bounded axially symmetric orbits by using the Poincare surfaces of section and Lyapunov characteristic numbers and find chaos in the case of disc-crossing orbits and completely regular motion in other cases

    Instabilities and stickiness in a 3D rotating galactic potential

    Full text link
    We study the dynamics in the neighborhood of simple and double unstable periodic orbits in a rotating 3D autonomous Hamiltonian system of galactic type. In order to visualize the four dimensional spaces of section we use the method of color and rotation. We investigate the structure of the invariant manifolds that we found in the neighborhood of simple and double unstable periodic orbits in the 4D spaces of section. We consider orbits in the neighborhood of the families x1v2, belonging to the x1 tree, and the z-axis (the rotational axis of our system). Close to the transition points from stability to simple instability, in the neighborhood of the bifurcated simple unstable x1v2 periodic orbits we encounter the phenomenon of stickiness as the asymptotic curves of the unstable manifold surround regions of the phase space occupied by rotational tori existing in the region. For larger energies, away from the bifurcating point, the consequents of the chaotic orbits form clouds of points with mixing of color in their 4D representations. In the case of double instability, close to x1v2 orbits, we find clouds of points in the four dimensional spaces of section. However, in some cases of double unstable periodic orbits belonging to the z-axis family we can visualize the associated unstable eigensurface. Chaotic orbits close to the periodic orbit remain sticky to this surface for long times (of the order of a Hubble time or more). Among the orbits we studied we found those close to the double unstable orbits of the x1v2 family having the largest diffusion speed.Comment: 29pages, 25 figures, accepted for publication in the International Journal of Bifurcation and Chao

    Density hardening plasticity and mechanical aging of silica glass under pressure: A Raman spectroscopic study

    Get PDF
    In addition of a flow, plastic deformation of structural glasses (in particular amorphous silica) is characterized by a permanent densification. Raman spectroscopic estimators are shown to give a full account of the plastic behavior of silica under pressure. While the permanent densification of silica has been widely discussed in terms of amorphous-amorphous transition, from a plasticity point of view, the evolution of the residual densification with the maximum pressure of a pressure cycle can be discussed as a density hardening phenomenon. In the framework of such a mechanical aging effect, we propose that the glass structure could be labelled by the maximum pressure experienced by the glass and that the saturation of densification could be associated with the densest packing of tetrahedra only linked by their vertices

    The intermediate neutron capture process: IV. Impact of nuclear model and parameter uncertainties

    Full text link
    We investigate both the systematic and statistical uncertainties associated with theoretical nuclear reaction rates of relevance during the i-process and explore their impact on the i-process elemental production, and subsequently on the surface enrichment, for a low-mass low-metallicity star during the early AGB phase. We use the TALYS reaction code (Koning et al. 2023) to estimate both the model and parameter uncertainties affecting the photon strength function and the nuclear level densities, hence the radiative neutron capture rates. The STAREVOL code (Siess et al. 2006) is used to determine the impact of nuclear uncertainties on the i-process nucleosynthesis in a 1 MM_{\odot} [Fe/H] = - 2.5 model star during the proton ingestion event in the early AGB phase. A large nuclear network of 1160 species coherently coupled to the transport processes is solved to follow the i-process nucleosynthesis. We find that the non-correlated parameter uncertainties lead the surface abundances uncertainties of element with Z40Z\geq 40 to range between 0.5 and 1.0 dex, with odd-ZZ elements displaying higher uncertainties. The correlated model uncertainties are of the same order of magnitude, and both model and parameter uncertainties have an important impact on potential observable tracers such as Eu and La. Both the correlated model and uncorrelated parameter uncertainties need to be estimated coherently before being propagated to astrophysical observables through multi-zone stellar evolution models. Many reactions are found to affect the i-process predictions and will require improved nuclear models guided by experimental constraints. Priority should be given to the reactions influencing the observable tracers.Comment: Accepted: October 11, 2023 \\ 14 Pages, 14 Figures, 2 Table

    Natural cement and monumental restoration

    Get PDF
    Natural cement, called "Roman” cement, was invented at the end of the 19th century and played an important role in the development of civil engineering works until the 1860s. More surprisingly, it was also used to restore historic buildings, such as gothic cathedrals. This paper deals with the mineralogy and the durability of natural cement in the particular case of the Bourges Cathedral in France. This study illustrates the interest of this material particularly adapted in stone repair or substitution. Contrary to traditional mortars, the present samples are made of neat cement paste, revealed by the absence of mineral additions as quartz or carbonate sand. Several combined techniques (SEM-EDS, TGA, XRD) were carried out to determine the composition of the hydraulic binder rich in calcium aluminate hydrates. The raw marl at the origin of the cement production contains oxidized pyrites which consist in a potential source of sulphate pollution of the surrounding limestone. The exposition of the cement in urban environment leads to some weathering features as atmospheric sulfation. Finally a petrophysical approach, based on water porosity, capillary sorption and compressive strength, has been performed to demonstrate the durability and the compatibility of natural cement applied as an historical building restoration morta

    Stellar kinematics in double-barred galaxies: the sigma-hollows

    Full text link
    We present SAURON integral-field stellar velocity and velocity dispersion maps for four double-barred early-type galaxies: NGC2859, NGC3941, NGC4725 and NGC5850. The presence of the inner bar does not produce major changes in the line-of-sight velocity, but it appears to have an important effect in the stellar velocity dispersion maps: we find two sigma-hollows of amplitudes between 10 and 40 km/s on either side of the center, at the ends of the inner bars. We have performed numerical simulations to explain these features. Ruling out other possibilities, we conclude that the sigma-hollows are an effect of the contrast between two kinematically different components: the high velocity dispersion of the bulge and the more ordered motion (low velocity dispersion) of the inner bar.Comment: 5 pages, 2 figures. Accepted for publication in ApJ Letter
    corecore