866 research outputs found

    CleAir monitoring system for particulate matter. A case in the Napoleonic Museum in Rome

    Get PDF
    Monitoring the air particulate concentration both outdoors and indoors is becoming a more relevant issue in the past few decades. An innovative, fully automatic, monitoring system called CleAir is presented. Such a system wants to go beyond the traditional technique (gravimetric analysis), allowing for a double monitoring approach: the traditional gravimetric analysis as well as the optical spectroscopic analysis of the scattering on the same filters in steady-state conditions. The experimental data are interpreted in terms of light percolation through highly scattering matter by means of the stretched exponential evolution. CleAir has been applied to investigate the daily distribution of particulate matter within the Napoleonic Museum in Rome as a test case

    Ground-based NO2 measurements at the Italian Brewer stations: A pilot study with Global Ozone Monitoring Experiment (GOME)

    Get PDF
    Ground-based NO2 total column measurements have been collected since 1992 using Brewer spectrophotometry at Rome, an urban site, and Ispra (semirural). These are the only ground-based stations regularly monitoring NO2 in Italy. The methodology of measurement together with the procedure to control its quality is described. From the analysis of the time series it was found that the mean value of the NO2 column is 1.63 DU atRome and 1.60 DU atIspra. A firstat tempt to compare NO2 vertical column densities (VCD) from GOME with those derived from ground-based Brewer measurements, under different atmospheric conditions and measurement time lags is here presented. The results of this pilot study showed unsatisfactory agreement because different atmospheres are probed by GOME and Brewer instruments. The GOME space resolution resulted insufficient to fully characterize the Rome and Ispra highly localized polluted areas

    Ground-based NO2 measurements at the Italian Brewer stations: A pilot study with Global Ozone Monitoring Experiment (GOME)

    Get PDF
    Ground-based NO2 total column measurements have been collected since 1992 using Brewer spectrophotometry at Rome, an urban site, and Ispra (semirural). These are the only ground-based stations regularly monitoring NO2 in Italy. The methodology of measurement together with the procedure to control its quality is described. From the analysis of the time series it was found that the mean value of the NO2 column is 1.63 DU atRome and 1.60 DU atIspra. A firstat tempt to compare NO2 vertical column densities (VCD) from GOME with those derived from ground-based Brewer measurements, under different atmospheric conditions and measurement time lags is here presented. The results of this pilot study showed unsatisfactory agreement because different atmospheres are probed by GOME and Brewer instruments. The GOME space resolution resulted insufficient to fully characterize the Rome and Ispra highly localized polluted areas

    Performance assessment of hygrothermal modelling for diagnostics and conservation in an Italian historical church

    Get PDF
    The hygrothermal modelling of historical churches is a promising approach to study preservation issues and suitable retrofit measures. However, difficulties can arise in the use of Heat, Air and Moisture (HAM) models, which are often customised objects to be integrated into validated building energy simulation (BES). This research outlines a multi-step methodology to investigate the capability of a BES software coupled with a HAM model (BES + HAM) as a technique for diagnostics and conservation in complex settings. The 17th-century church of Santa Rosalia (Italy) was used as a historical site in a real context. As first step, the performance of the simulation tool was analysed through standardised exercises aiming at excluding incorrect assumptions and calculations in the HAM model (HMWall). Secondly, a building model of the church using a 1D heat transfer model (named building model A) was compared with one using HMWall (named building model B) in terms of the accuracy of the indoor climate simulations against hygrothermal measurements. The results showed that building model B enhanced the simulation accuracy by +50% with respect to building model A. Finally, annual simulations inside the church were run to further compare the seasonal trends of indoor climate scenario obtained from the two building models. Building model B allowed to study the water content distribution inside the altarpiece and a wall partition, showing that BES + HAM tools can be used to identify potential moisture-induced conservation risks

    Personal UV exposure on a ski-field at an alpine site

    No full text
    International audienceMountain sites experience enhanced ambient UV radiation levels due to the concurrent effects of shorter radiation path-length, low aerosol load and high reflectivity of the snow surfaces. This study was encouraged by the possibility to collect data of personal UV exposure in the mountainous areas of Italy, for the first time. Personal UV exposure (expressed in terms of Exposure Ratio, ER) of two groups of volunteers (ski instructors and skiers) at the Alpine site of La Thuile (Valle d'Aosta region, Italy) was assessed using polysulphone dosimetry which was tested in a mountainous snow-covered environment. In addition measurements of biological markers of individual response to UV exposure such as skin colorimetric parameters were carried out. It was found that snow and altitude of study site affect calibration curves of polysulphone dosimeters in comparison to a situation without snow. The median ER, taking into account the whole sample, is 0.60 in winter, with a range of 0.29 to 1.46, and 1.02 in spring, ranging from 0.46 to 1.72. There are no differences in exposures across skiers and instructors in spring while in winter skiers experience lower values. UV exposures are not sensitive to the use of sunscreen across instructor/skier group by day or by seasons or by photo-type. With regard to colorimetric parameters, the main result was that both skiers and instructors had on average significantly lower values of L* and b* after exposure i.e. becoming darker but the inappropriate sunscreen use did not reveal any changes in skin colorimetric parameters except in one spring day. In conclusions UV intensities on the ski-fields are often significantly higher than those on horizontal surfaces. Given the high levels of exposure observed in the present study, dedicated public heath messages on the correct sunscreen use should be adopted

    The role of urban boundary layer investigated with high-resolution models and ground-based observations in Rome area: a step towards understanding parameterization potentialities

    Get PDF
    Abstract. The urban forcing on thermodynamical conditions can greatly influence the local evolution of the atmospheric boundary layer. Heat stored in an urban environment can produce noteworthy mesoscale perturbations of the lower atmosphere. The new generation of high-resolution numerical weather prediction models (NWP) is nowadays often applied also to urban areas. An accurate representation of cities is key role because of the cities' influence on wind, temperature and water vapor content of the planetary boundary layer (PBL). The Advanced Weather Research and Forecasting model WRF (ARW) has been used to reproduce the circulation in the urban area of Rome. A sensitivity study is performed using different PBL and surface schemes. The significant role of the surface forcing in the PBL evolution has been investigated by comparing model results with observations coming from many instruments (lidar, sodar, sonic anemometer and surface stations). The impact of different urban canopy models (UCMs) on the forecast has also been investigated. One meteorological event will be presented, chosen as statistically relevant for the area of interest. The WRF-ARW model shows a tendency to overestimate the vertical transport of horizontal momentum from upper levels to low atmosphere if strong large-scale forcing occurs. This overestimation is partially corrected by a local PBL scheme coupled with an advanced UCM. Moreover, a general underestimation of vertical motions has been verified

    Mechanical properties of the most common european woods: A literature review

    Get PDF
    Wood is an orthotropic material used since ancient time. A literature research about the mechanical properties of density, fracture toughness, modulus of elasticity, and Poisson’s ratio has been done to have a broader view on the subject. The publications relating to the topic were found through the two search engines Scopus and Google Scholar that have yielded several papers, including articles and book sections. In general, there is no standardization on the method of analysis carried out on wood, underlining the great difficulty in studying this complex material. The parameter of density has a great variability and needs a deeper investigation; fracture toughness is not always available in literature, not even in the different directions of the wood sample. Interesting is the modulus of elasticity, which provides a correlation with density, especially in longitudinal section but, again, it needs to be studied in detail. The parameter of Poisson’s ratio is provided as single values in three different directions, but mainly for softwood. All the parameters require a more in-depth study for both softwood and hardwood. Furthermore, the type of analysis, whether experimental or modelling, needs to be standardized to have more comparable results

    Climate-induced conservation risks of historic reinforced concrete buildings: Preliminary results from literature review

    Get PDF
    Environmental conditions can favour different kinds of deterioration in historic reinforced concrete structures. This preliminary results from literature review are focused on the climate-induced risks affecting reinforced concrete buildings with respect to mechanical, chemical, and biological deterioration. To this purpose, a three-step process defined by the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram, was used leading to the inclusion of 45 documents identified via the search engines Scopus and Web of Science. The outcomes highlight that chemical and mechanical decays are the most investigated ones, being mainly triggered by salt weathering and freezing-thawing cycles. It was found that experimental and theoretical approaches are often coupled to estimate climate-induced deterioration mechanisms, also considering environmental parameters. Finally, the literature search provides some milestones which can be used to evaluate gaps and research needs in the field of climate-induced conservative risks affecting reinforced concrete structures

    Preliminary study of the mechanical and hygrothermal performance of concrete reinforced with fibrillated cellulose

    Get PDF
    Cement, being the most widely used building material, is the responsible for a large share of greenhouse gas emissions. To reduce the environmental impact of its production, natural fibres can be used as eco-friendly additives. Moreover, their potential use in traditional lime-based mortars makes them an ideal choice for green buildings as well as for the retrofit of historical buildings. An innovative cementitious composite reinforced with fibrillated cellulose (hereafter called «green concrete») was tested to assess its mechanical and physical properties. Samples were casted using Portland cement and natural hydraulic lime and varying the ratios among the constituents. Viscosity and setting time of the fresh pastes were determined with a viscosimeter and a Vicat apparatus, while their hydration was studied by thermal analysis. The influence of the fibres on the flexural strength of the final composite was determined through mechanical tests. The expected hygrothermal performance of the «green concrete» was explored through dynamic hygrothermal simulation to investigate its potential use as a retrofit material. A sensitivity analysis (SA), based on the hygrothermal properties of natural-based building materials similar to the «green concrete», was conducted to identify the parameters influencing more the simulation of annual internal temperature and moisture variations. The preliminary assessment of the mechanical properties of the «green concrete» showed that at higher percentages the cellulose fibres can negatively affect the workability/setting time of the fresh pastes and the flexural strength. The most promising samples were identified and will undergo further investigation. The SA results outlined that the «green concrete» might not be effective for thermal insulation, although it might be used as a moisture-buffering layer by adjusting the values of the free water saturation moisture content, the equilibrium moisture content at RH=80% and the dry vapour diffusion resistance factor of the final composite
    • …
    corecore