114 research outputs found

    A Genome-Wide Study of Cytogenetic Changes in Colorectal Cancer Using SNP Microarrays: Opportunities for Future Personalized Treatment

    Get PDF
    In colorectal cancer (CRC), chromosomal instability (CIN) is typically studied using comparative-genomic hybridization (CGH) arrays. We studied paired (tumor and surrounding healthy) fresh frozen tissue from 86 CRC patients using Illumina's Infinium-based SNP array. This method allowed us to study CIN in CRC, with simultaneous analysis of copy number (CN) and B-allele frequency (BAF) - a representation of allelic composition. These data helped us to detect mono-allelic and bi-allelic amplifications/deletion, copy neutral loss of heterozygosity, and levels of mosaicism for mixed cell populations, some of which can not be assessed with other methods that do not measure BAF. We identified associations between CN abnormalities and different CRC phenotypes (histological diagnosis, location, tumor grade, stage, MSI and presence of lymph node metastasis). We showed commonalities between regions of CN change observed in CRC and the regions reported in previous studies of other solid cancers (e.g. amplifications of 20q, 13q, 8q, 5p and deletions of 18q, 17p and 8p). From Therapeutic Target Database, we identified relevant drugs, targeted to the genes located in these regions with CN changes, approved or in trials for other cancers and common diseases. These drugs may be considered for future therapeutic trials in CRC, based on personalized cytogenetic diagnosis. We also found many regions, harboring genes, which are not currently targeted by any relevant drugs that may be considered for future drug discovery studies. Our study shows the application of high density SNP arrays for cytogenetic study in CRC and its potential utility for personalized treatment

    Identification of genetic effects underlying Type 2 Diabetes in South Asian and European populations

    Get PDF
    South Asians are at high risk of developing type 2 diabetes (T2D). We carried out a genome-wide association meta-analysis with South Asian T2D cases (n=16,677) and controls (n=33,856), followed by combined analyses with Europeans (neff=231,420). We identify 21 novel genetic loci for significant association with T2D (P=4.7x10-8 to 5.2x10-12), to the best of our knowledge at the point of analysis. The loci are enriched for regulatory features, including DNA methylation and gene expression in relevant tissues, and highlight CHMP4B, PDHB, LRIG1 and other genes linked to adiposity and glucose metabolism. A polygenic risk score based on South Asian-derived summary statistics shows ~4-fold higher risk for T2D between the top and bottom quartile. Our results provide further insights into the genetic mechanisms underlying T2D, and highlight the opportunities for discovery from joint analysis of data from across ancestral populations

    Formalin Fixation at Low Temperature Better Preserves Nucleic Acid Integrity

    Get PDF
    Fixation with formalin, a widely adopted procedure to preserve tissue samples, leads to extensive degradation of nucleic acids and thereby compromises procedures like microarray-based gene expression profiling. We hypothesized that RNA fragmentation is caused by activation of RNAses during the interval between formalin penetration and tissue fixation. To prevent RNAse activation, a series of tissue samples were kept under-vacuum at 4°C until fixation and then fixed at 4°C, for 24 hours, in formalin followed by 4 hours in ethanol 95%. This cold-fixation (CF) procedure preserved DNA and RNA, so that RNA segments up to 660 bp were efficiently amplified. Histological and immunohistochemical features were fully comparable with those of standard fixation. Microarray-based gene expression profiles were comparable with those obtained on matched frozen samples for probes hybridizing within 700 bases from the reverse transcription start site. In conclusion, CF preserves tissues and nucleic acids, enabling reliable gene expression profiling of fixed tissues

    GWAS for discovery and replication of genetic loci associated with sudden cardiac arrest in patients with coronary artery disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epidemiologic evidence suggests a heritable component to risk for sudden cardiac arrest independent of risk for myocardial infarction. Recent candidate gene association studies for community sudden cardiac arrests have focused on a limited number of biological pathways and yielded conflicting results. We sought to identify novel gene associations for sudden cardiac arrest in patients with coronary artery disease by performing a genome-wide association study.</p> <p>Methods</p> <p>Tagging SNPs (n = 338,328) spanning the genome were typed in a case-control study comparing 89 patients with coronary artery disease and sudden cardiac arrest due to ventricular tachycardia or ventricular fibrillation to 520 healthy controls.</p> <p>Results</p> <p>Fourteen SNPs including 7 SNPs among 7 genes (ACYP2, AP1G2, ESR1, DGES2, GRIA1, KCTD1, ZNF385B) were associated with sudden cardiac arrest (all p < 1.30 × 10<sup>-7</sup>), following Bonferroni correction and adjustment for population substructure, age, and sex; genetic variation in ESR1 (p = 2.62 × 10<sup>-8</sup>; Odds Ratio [OR] = 1.43, 95% confidence interval [CI]:1.277, 1.596) has previously been established as a risk factor for cardiovascular disease. In tandem, the role of 9 genes for monogenic long QT syndrome (LQT1-9) was assessed, yielding evidence of association with CACNA1C (LQT8; p = 3.09 × 10<sup>-4</sup>; OR = 1.18, 95% CI:1.079, 1.290). We also assessed 4 recently published gene associations for sudden cardiac arrest, validating NOS1AP (p = 4.50 × 10<sup>-2</sup>, OR = 1.15, 95% CI:1.003, 1.326), CSMD2 (p = 6.6 × 10<sup>-3</sup>, OR = 2.27, 95% CI:1.681, 2.859), and AGTR1 (p = 3.00 × 10<sup>-3</sup>, OR = 1.13, 95% CI:1.042, 1.215).</p> <p>Conclusion</p> <p>We demonstrate 11 gene associations for sudden cardiac arrest due to ventricular tachycardia/ventricular fibrillation in patients with coronary artery disease. Validation studies in independent cohorts and functional studies are required to confirm these associations.</p

    A genome-wide DNA methylation study in colorectal carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We performed a genome-wide scan of 27,578 CpG loci covering 14,475 genes to identify differentially methylated loci (DML) in colorectal carcinoma (CRC).</p> <p>Methods</p> <p>We used Illumina's Infinium methylation assay in paired DNA samples extracted from 24 fresh frozen CRC tissues and their corresponding normal colon tissues from 24 consecutive diagnosed patients at a tertiary medical center.</p> <p>Results</p> <p>We found a total of 627 DML in CRC covering 513 genes, of which 535 are novel DML covering 465 genes. We also validated the Illumina Infinium methylation data for top-ranking genes by non-bisulfite conversion q-PCR-based methyl profiler assay in a subset of the same samples. We also carried out integration of genome-wide copy number and expression microarray along with methylation profiling to see the functional effect of methylation. Gene Set Enrichment Analysis (GSEA) showed that among the major "gene sets" that are hypermethylated in CRC are the sets: "inhibition of adenylate cyclase activity by G-protein signaling", "Rac guanyl-nucleotide exchange factor activity", "regulation of retinoic acid receptor signaling pathway" and "estrogen receptor activity". Two-level nested cross validation showed that DML-based predictive models may offer reasonable sensitivity (around 89%), specificity (around 95%), positive predictive value (around 95%) and negative predictive value (around 89%), suggesting that these markers may have potential clinical application.</p> <p>Conclusion</p> <p>Our genome-wide methylation study in CRC clearly supports most of the previous findings; additionally we found a large number of novel DML in CRC tissue. If confirmed in future studies, these findings may lead to identification of genomic markers for potential clinical application.</p

    Association of genetic susceptibility variants for type 2 diabetes with breast cancer risk in women of European ancestry.

    Get PDF
    Purpose: Type 2 diabetes (T2D) has been reported to be associated with an elevated risk of breast cancer. It is unclear, however, whether this association is due to shared genetic factors. Methods: We constructed a genetic risk score (GRS) using risk variants from 33 known independent T2D susceptibility loci and evaluated its relation to breast cancer risk using the data from two consortia, including 62,328 breast cancer patients and 83,817 controls of European ancestry. Unconditional logistic regression models were used to derive adjusted odds ratios (ORs) and 95 % confidence intervals (CIs) to measure the association of breast cancer risk with T2D GRS or T2D-associated genetic risk variants. Meta-analyses were conducted to obtain summary ORs across all studies. Results: The T2D GRS was not found to be associated with breast cancer risk, overall, by menopausal status, or for estrogen receptor positive or negative breast cancer. Three T2D associated risk variants were individually associated with breast cancer risk after adjustment for multiple comparisons using the Bonferroni method (at p < 0.001), rs9939609 (FTO) (OR 0.94, 95 % CI = 0.92–0.95, p = 4.13E−13), rs7903146 (TCF7L2) (OR 1.04, 95 % CI = 1.02–1.06, p = 1.26E−05), and rs8042680 (PRC1) (OR 0.97, 95 % CI = 0.95–0.99, p = 8.05E−04). Conclusions: We have shown that several genetic risk variants were associated with the risk of both T2D and breast cancer. However, overall genetic susceptibility to T2D may not be related to breast cancer risk

    Genome-Wide Association Study Identifies Chromosome 10q24.32 Variants Associated with Arsenic Metabolism and Toxicity Phenotypes in Bangladesh

    Get PDF
    Arsenic contamination of drinking water is a major public health issue in many countries, increasing risk for a wide array of diseases, including cancer. There is inter-individual variation in arsenic metabolism efficiency and susceptibility to arsenic toxicity; however, the basis of this variation is not well understood. Here, we have performed the first genome-wide association study (GWAS) of arsenic-related metabolism and toxicity phenotypes to improve our understanding of the mechanisms by which arsenic affects health. Using data on urinary arsenic metabolite concentrations and approximately 300,000 genome-wide single nucleotide polymorphisms (SNPs) for 1,313 arsenic-exposed Bangladeshi individuals, we identified genome-wide significant association signals (P<5×10−8) for percentages of both monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) near the AS3MT gene (arsenite methyltransferase; 10q24.32), with five genetic variants showing independent associations. In a follow-up analysis of 1,085 individuals with arsenic-induced premalignant skin lesions (the classical sign of arsenic toxicity) and 1,794 controls, we show that one of these five variants (rs9527) is also associated with skin lesion risk (P = 0.0005). Using a subset of individuals with prospectively measured arsenic (n = 769), we show that rs9527 interacts with arsenic to influence incident skin lesion risk (P = 0.01). Expression quantitative trait locus (eQTL) analyses of genome-wide expression data from 950 individual's lymphocyte RNA suggest that several of our lead SNPs represent cis-eQTLs for AS3MT (P = 10−12) and neighboring gene C10orf32 (P = 10−44), which are involved in C10orf32-AS3MT read-through transcription. This is the largest and most comprehensive genomic investigation of arsenic metabolism and toxicity to date, the only GWAS of any arsenic-related trait, and the first study to implicate 10q24.32 variants in both arsenic metabolism and arsenical skin lesion risk. The observed patterns of associations suggest that MMA% and DMA% have distinct genetic determinants and support the hypothesis that DMA is the less toxic of these two methylated arsenic species. These results have potential translational implications for the prevention and treatment of arsenic-associated toxicities worldwide

    Bovine telomere dynamics and the association between telomere length and productive lifespan

    Get PDF
    Average telomere length (TL) in blood cells has been shown to decline with age in a range of vertebrate species, and there is evidence that TL is a heritable trait associated with late-life health and mortality in humans. In non-human mammals, few studies to date have examined lifelong telomere dynamics and no study has estimated the heritability of TL, despite these being important steps towards assessing the potential of TL as a biomarker of productive lifespan and health in livestock species. Here we measured relative leukocyte TL (RLTL) in 1,328 samples from 308 Holstein Friesian dairy cows and in 284 samples from 38 female calves. We found that RLTL declines after birth but remains relatively stable in adult life. We also calculated the first heritability estimates of RLTL in a livestock species which were 0.38 (SE = 0.03) and 0.32 (SE = 0.08) for the cow and the calf dataset, respectively. RLTL measured at the ages of one and five years were positively correlated with productive lifespan (p < 0.05). We conclude that bovine RLTL is a heritable trait, and its association with productive lifespan may be used in breeding programmes aiming to enhance cow longevity
    corecore