7,966 research outputs found

    Triggering Active Galactic Nuclei in Hierarchical Galaxy Formation: Disk instability vs. Interactions

    Full text link
    Using a semi analytic model for galaxy formation we investigate the effects of Black Hole accretion triggered by disk instabilities (DI) in isolated galaxies on the evolution of AGN. Specifically, we took on, developed and expanded the Hopkins & Quataert (2011) model for the mass inflow following disk perturbations, and compare the corresponding evolution of the AGN population with that arising in a scenario where galaxy interactions trigger AGN (IT mode). We extended and developed the DI model by including different disk surface density profiles, to study the maximal contribution of DI to the evolution of the AGN population. We obtained the following results: i) for luminosities corresponding to M1450≳−26M_{1450}\gtrsim -26 the DI mode can provide the BH accretion needed to match the observed AGN luminosity functions up to z≈4.5z \approx 4.5; in such a luminosity range and redshift, it can compete with the IT scenario as the main driver of cosmological evolution of AGN; ii) The DI scenario cannot provide the observed abundance of high-luminosity QSO with M1450≲−26M_{1450}\lesssim -26 AGN, as well as the abundance of high-redhshift z≈4.5z \approx 4.5 QSOs with M1450≲−24M_{1450}\lesssim -24, while the IT scenario provides an acceptable match up to z≈6z \approx 6, as found in our earliest works; iii) The dispersion of the distributions of Eddington ratio for low- and intermediate-luminosity AGN (bolometric LAGNL_{AGN} = 104310^{43} - 104510^{45} erg/s) is predicted to be much smaller in the DI scenario compared to the IT mode; iv) The above conclusions are robust with respect to the explored variants of the Hopkins & Quataert (2011) model. We discuss the physical origin of our findings, and how it is possible to pin down the dominant fueling mechanism in the low-intermediate luminosity range M1450≳−26M_{1450}\gtrsim -26 where both the DI and the IT modes are viable candidates as drivers for the AGN evolution.Comment: Accepted for publication in Astronomy & Astrophysics, 24 pages, 8 figures; updated reference

    Backscattering Differential Ghost Imaging in Turbid Media

    Full text link
    In this Letter we present experimental results concerning the retrieval of images of absorbing objects immersed in turbid media via differential ghost imaging (DGI) in a backscattering configuration. The method has been applied, for the first time to our knowledge, to the imaging of small thin black objects located at different depths inside a turbid solution of polystyrene nanospheres and its performances assessed via comparison with standard imaging techniques. A simple theoretical model capable of describing the basic optics of DGI in turbid media is proposed.Comment: 5 pages, 6 figure

    Coherent imaging of a pure phase object with classical incoherent light

    Get PDF
    By using the ghost imaging technique, we experimentally demonstrate the reconstruction of the diffraction pattern of a {\em pure phase} object by using the classical correlation of incoherent thermal light split on a beam splitter. The results once again underline that entanglement is not a necessary feature of ghost imaging. The light we use is spatially highly incoherent with respect to the object (≈2μ\approx 2 \mum speckle size) and is produced by a pseudo-thermal source relying on the principle of near-field scattering. We show that in these conditions no information on the phase object can be retrieved by only measuring the light that passed through it, neither in a direct measurement nor in a Hanbury Brown-Twiss (HBT) scheme. In general, we show a remarkable complementarity between ghost imaging and the HBT scheme when dealing with a phase object.Comment: 13 pages, 11 figures. Published in Physical Review A. Replaced version fixes some problems with Figs. 1, 4 and 1

    Investigation of the reinforcement of ductule metals with strong, high modulus discontinuous, brittle fibers Quarterly report, 1 May - 1 Aug. 1968

    Get PDF
    Factors affecting tensile strength of ductile metals reinforced with short, brittle fiber

    Some fundamental fracture mechanisms applicable to advanced filament reinforced composites

    Get PDF
    Stress analysis and fracture mechanisms of advanced fiber reinforced composite

    RF performance measurement of the DSS-14 70-meter antenna at C-band/L-band

    Get PDF
    The calibration of the 70-meter antenna at C-band (5.01 GHz) and L-band (1.668 GHz) is described. This calibration comes after a modification to an existing L-band feed to include the C-band frequencies. The test technique employs noise-adding radiometers and associated equipment running simultaneously at both frequencies. The test procedure is described including block diagrams, and results are presented for efficiency, system temperature, and pointing

    Quantum spatial correlations in high-gain parametric down-conversion measured by means of a CCD camera

    Full text link
    We consider travelling-wave parametric down-conversion in the high-gain regime and present the experimental demonstration of the quantum character of the spatial fluctuations in the system. In addition to showing the presence of sub-shot noise fluctuations in the intensity difference, we demonstrate that the peak value of the normalized spatial correlations between signal and idler lies well above the line marking the boundary between the classical and the quantum domain. This effect is equivalent to the apparent violation of the Cauchy-Schwartz inequality, predicted by some of us years ago, which represents a spatial analogue of photon antibunching in time. Finally, we analyse numerically the transition from the quantum to the classical regime when the gain is increased and we emphasize the role of the inaccuracy in the determination of the symmetry center of the signal/idler pattern in the far-field plane.Comment: 21 pages, 11 figures, submitted to J. Mod. Opt. special issue on Quantum Imagin
    • …
    corecore