12,687 research outputs found

    The three-dimensional BF Model with Cosmological Term in the Axial Gauge

    Get PDF
    We quantize the three-dimensional BFBF-model using axial gauge conditions. Exploiting the rich symmetry-structure of the model we show that the Green-functions correspond to tree graphs and can be obtained as the unique solution of the Ward-Identities. Furthermore, we will show that the theory can be uniquely determined by symmetry considerations without the need of an action principle.Comment: one reference added, transmission errors correcte

    Stripe phases in high-temperature superconductors

    Full text link
    Stripe phases are predicted and observed to occur in a class of strongly-correlated materials describable as doped antiferromagnets, of which the copper-oxide superconductors are the most prominent representative. The existence of stripe correlations necessitates the development of new principles for describing charge transport, and especially superconductivity, in these materials.Comment: 5 pp, 1 color eps fig., to appear as a Perspective in Proc. Natl. Acad. Sci. US

    Exact Results for 1D Kondo Lattice from Bosonization

    Full text link
    We find a solvable limit to the problem of the 1D electron gas interacting with a lattice of Kondo scattering centers. In this limit, we present exact results for the problems of incommensurate filling, commensurate filling, impurity vacancy states, and the commensurate-incommensurate transition.Comment: 4 pages, two columns, Latex fil

    Sea surface velocities from visible and infrared multispectral atmospheric mapping sensor imagery

    Get PDF
    High resolution (100 m), sequential Multispectral Atmospheric Mapping Sensor (MAMS) images were used in a study to calculate advective surface velocities using the Maximum Cross Correlation (MCC) technique. Radiance and brightness temperature gradient magnitude images were formed from visible (0.48 microns) and infrared (11.12 microns) image pairs, respectively, of Chandeleur Sound, which is a shallow body of water northeast of the Mississippi delta, at 145546 GMT and 170701 GMT on 30 Mar. 1989. The gradient magnitude images enhanced the surface water feature boundaries, and a lower cutoff on the gradient magnitudes calculated allowed the undesirable sunglare and backscatter gradients in the visible images, and the water vapor absorption gradients in the infrared images, to be reduced in strength. Requiring high (greater than 0.4) maximum cross correlation coefficients and spatial coherence of the vector field aided in the selection of an optimal template size of 10 x 10 pixels (first image) and search limit of 20 pixels (second image) to use in the MCC technique. Use of these optimum input parameters to the MCC algorithm, and high correlation and spatial coherence filtering of the resulting velocity field from the MCC calculation yielded a clustered velocity distribution over the visible and infrared gradient images. The velocity field calculated from the visible gradient image pair agreed well with a subjective analysis of the motion, but the velocity field from the infrared gradient image pair did not. This was attributed to the changing shapes of the gradient features, their nonuniqueness, and large displacements relative to the mean distance between them. These problems implied a lower repeat time for the imagery was needed in order to improve the velocity field derived from gradient imagery. Suggestions are given for optimizing the repeat time of sequential imagery when using the MCC method for motion studies. Applying the MCC method to the infrared brightness temperature imagery yielded a velocity field which did agree with the subjective analysis of the motion and that derived from the visible gradient imagery. Differences between the visible and infrared derived velocities were 14.9 cm/s in speed and 56.7 degrees in direction. Both of these velocity fields also agreed well with the motion expected from considerations of the ocean bottom topography and wind and tidal forcing in the study area during the 2.175 hour time interval

    An empirical study of the performance of APMOVPE AM0 InP homojunction solar cells as a function of emitter thickness and doping, and base doping

    Get PDF
    Their excellent radiation resistance and conversion efficiencies greater than 20 percent, measured under global conditions, make InP shallow-homojunction solar cells very attractive for space or terrestrial application. In addition, modeling studies show that, for optimized design, efficiencies of these devices should exceed 20 percent even under AM0 conditions. However, a systematic experimental investigation of the influence of the various cell design parameters on cell performance has not as yet been made. For the n+/p/p+ structures investigated in the previous modeling study, the design parameters include the impurity concentrations and thicknesses of the emitter and base layers. In the work reported here, researchers discuss an experimental investigation of the effects on cell performance of varying the impurity concentrations of the emitter and base and thickness of the emitter

    Local origins impart conserved bone type-related differences in human osteoblast behaviour

    Get PDF
    Osteogenic behaviour of osteoblasts from trabecular, cortical and subchondral bone were examined to determine any bone type-selective differences in samples from both osteoarthritic (OA) and osteoporotic (OP) patients. Cell growth, differentiation; alkaline phosphatase (TNAP) mRNA and activity, Runt-related transcription factor-2 (RUNX2), SP7-transcription factor (SP7), bone sialoprotein-II (BSP-II), osteocalcin/bone gamma-carboxyglutamate (BGLAP), osteoprotegerin (OPG, TNFRSF11B), receptor activator of nuclear factor-κβ ligand (RANKL, TNFSF11) mRNA levels and proangiogenic vascular endothelial growth factor-A (VEGF-A) mRNA and protein release were assessed in osteoblasts from paired humeral head samples from age-matched, human OA/OP (n = 5/4) patients. Initial outgrowth and increase in cell number were significantly faster (p < 0.01) in subchondral and cortical than trabecular osteoblasts, in OA and OP, and this bone type-related differences were conserved despite consistently faster growth in OA. RUNX2/SP7 levels and TNAP mRNA and protein activity were, however, greater in trabecular than subchondral and cortical osteoblasts in OA and OP. BSP-II levels were significantly greater in trabecular and lowest in cortical osteoblasts in both OA and OP. In contrast, BGLAP levels showed divergent bone type-selective behaviour; highest in osteoblasts from subchondral origins in OA and trabecular origins in OP. We found virtually identical bone type-related differences, however, in TNFRSF11B:TNFSF11 in OA and OP, consistent with greater potential for paracrine effects on osteoclasts in trabecular osteoblasts. Subchondral osteoblasts (OA) exhibited highest VEGF-A mRNA levels and release. Our data indicate that human osteoblasts in trabecular, subchondral and cortical bone have inherent, programmed diversity, with specific bone type-related differences in growth, differentiation and pro-angiogenic potential in vitro

    Ejaculation failure on the day of oocyte retrieval for IVF: Case report

    Get PDF
    Unexpected ejaculation failure on the day of oocyte retrieval for IVF occurs once or twice a year in our Reproductive Medicine Unit, where ∼500 oocyte retrievals are performed each year. Two clinical situations which occurred in 2001 are presented. In the first case, sperm were finally obtained by epididymal aspiration and resulted in the fertilization of five oocytes by ICSI. The transfer of two fresh embryos did not result in a pregnancy and the three supernumerary zygotes were cryopreserved. The male patient presented an anxio-depressive episode necessitating psychiatric hospitalization 1 week after the oocyte retrieval. In the second case, no sperm were obtained and the four oocytes were therefore lost. The couple went through a crisis in their relationship and tried another cycle of IVF 10 months later, after the preventive cryopreservation of a sperm sample. On the day of oocyte retrieval the patient was unable to produce a fresh sample but three zygotes were obtained through ICSI using the back-up cryopreserved sperm. Two embryos were transferred but no pregnancy ensued. The clinical decision-making processes for these two cases are described, as well as the measures employed to help prevent these unfortunate situation

    High-efficiency heteroepitaxial InP solar cells

    Get PDF
    High-efficiency, thin-film InP solar cells grown heteroepitaxially on GaAs and Si single-crystal bulk substrates are being developed as a means of eliminating the problems associated with using single-crystal InP substrates. A novel device structure employing a compositionally graded Ga(x)In(1-x)As layer between the bulk substrate and the InP cell layers is used to reduce the dislocation density and improve the minority carrier properties in the InP. The structures are grown in a continuous sequence of steps using computer-controlled atmospheric pressure metalorganic vapor phase epitaxy (APMOVPE). Dislocation densities as low as 3 x 10(exp 7) sq cm and minority carrier lifetimes as high as 3.3 ns are achieved in the InP layers with this method using both GaAs or Si substrates. Structures prepared in this fashion are also completely free of microcracks. These results represent a substantial improvement in InP layer quality when compared to heteroepitaxial InP prepared using conventional techniques such as thermally cycled growth and post-growth annealing. The present work is is concerned with the fabrication and characterization of high-efficiency, thin-film InP solar cells. Both one-sun and concentrator cells were prepared for device structures grown on GaAs substrates. One-cell cells have efficiencies as high as 13.7 percent at 25 C. However, results for the concentrator cells are emphasized. The concentrator cell performance is characterized as a function of the air mass zero (AM0) solar concentration ratio and operating temperature. From these data, the temperature coefficients of the cell performance parameters are derived as a function of the concentration ratio. Under concentration, the cells exhibit a dramatic increase in efficiency and an improved temperature coefficient of efficiency. At 25 C, a peak conversion efficiency of 18.9 percent is reported. At 80 C, the peak AM0 efficiency is 15.7 percent at 75.6 suns. These are the highest efficiencies yet reported for InP heteroepitaxial cells. Approaches for further improving the cell performance are discussed

    InP concentrator solar cells for space applications

    Get PDF
    The design, fabrication, and characterization of high-performance, n(+)/p InP shallow-homojunction (SHJ) concentrator solar cells is described. The InP device structures were grown by atmospheric-pressure metalorganic vapor phase epitaxy (APMOVPE). A preliminary assessment of the effects of grid collection distance and emitter sheet resistance on cell performance is presented. At concentration ratios of over 100, cells with AM0 efficiencies in excess of 21 percent at 25 C and 19 percent at 80 C are reported. These results indicate that high-efficiency InP concentrator cells can be fabricated using existing technologies. The performance of these cells as a function of temperature is discussed, and areas for future improvement are outlined
    • …
    corecore