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1 Introduction

Topological �eld models [1] of the Schwarz-type [2] have been the subject of continous investigations

over the recent years. These theories are characterized by an invariant action which does not depend

on the metric structure of the manifold. Therefore, they are devoid of any local observables.

Nevertheless, the metric appears in

the gauge-�xing term which is itself a BRST-variation. The variation of the gauge-�xing term

with respect to the metric is a BRST-exact quantity implying the existence of a linear vector-like

supersymmetry [4] �� in an elegant manner. Together with

the BRST-symmetry, the symmetry �� forms an algebra of the form

fs; ��g = @� (1.1)

stating that translations are no physical operations and thus re
ecting the topological nature of

the theory. Thus one might say that this relation lies at the heart of their topological properties.

The most prominent example of these theories is of course the three-dimensional Chern-Simons

theory which has led to the powerful connection between link-invariants and the vacuum expectation

value of Wilson lines [3]. The Chern-Simons theory has also been studied extensively from a purely

�eld theoretical point of view. It turns out to be a completely ultraviolet �nite theory and that

this �niteness is a direct consequence of the topological supersymmetry (1.1). Originally, this

supersymmetry has been found using the Landau-gauge [4]. In a serie of papers it has been

generalized to other gauge-conditions as well [5, 6, 7]. Of particular interest was the case of the

axial gauge where it turned

out that the topological supersymmetry is not only responsible for the �niteness of

the theory, but also allows to compute the Green functions without the use of

an action principle [8]. Let us also mention that it has been shown that the topological super-

symmetry exists also in string theories [9] and in two-dimensional chiral W3-gravity [10] and that

it turned out to be an extremely useful tool for solving the descent equations associated with the

integrated BRST-cohomology [11].

Another class of Schwarz-type Topological theories [2] are

the BF models. Despite of their simple form they reveal a surprisingly rich

symmetry structure. Indeed, they allow for reducible invariances

[12]. In the particular case of three dimensions, another interesting feature

is that the B-�eld is a 1-form and therefore allows the addition of a cubic term in B into the

action. This term is usually referred to as a cosmological constant term since then the model is

related to three-dimensional Einstein-Hilbert gravity with such a term. A detailed investigation of

the symmetry stucture and �niteness properties of this model in the Landau-gauge has been given

in [13].

Th�eorique, Universit�e de Gen�eve. Supported by the "Fonds Turrettini" and the "Fonds F. Wurth"
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In the case of the Chern-Simons model in the axial gauge, we found that

the supersymmetry has two main consequences. Indeed, it turned out to be

strong enough for �xing all the Green functions of the theory (in this sense, one

can say that it can be substituted to the action principle) and it also imposes

the principal value prescription for the propagators. Therefore, it would be desirable to know

wether this remains valid for the BF system in the axial gauge. This is precisely the

question we will address in this paper and we will show that the answer is

positive.

The work is organized as follows. In section 2 we introduce the action and �x the notation and

conventions. Section 3 presents the symmetries and all the functional identities. We investigate

their

consequences for the equations of motion in section 4.1 and for the calculation of the propagators

in section 4.2. At the end, we propose some conclusion.

2 The 3D BF model with cosmological term in the axial gauge

The complete action of the 3D BF model containing a cosmological term with an axial gauge �xing

is given by

S = Sinv + Sgf ; (2.1)

with

Sinv = �1

2
Tr

Z
d3x

�
����(F��B� +

2�

3
B�B�B�)

�
;

Sgf = Tr

Z
d3x

�
bn�A� + dm�B� + �cn�(D�c+ �[B�; �]) + ��m�(D��+ [B�; c])

�
:

(2.2)

and D� : : := @� : : :+g[A�; : : :] denoting the gauge covariant derivative. F�� is the �eld strength

of the gauge �eld A�. Further b, d are the Langrange multipliers imposing the gauge-conditions

n�A� = 0 and m�B� = 0 where n� and m� are it a priori two independent gauge �xing directions.

�c, c and ��, � are the

anti-ghost and ghost �elds corresponding to the two gauge symmetries of Sinv

�1A� = �D�� ; �1B� = � [B� ; �] ;

�2A� = �� [B�; �] ; �2B� = �D�� :
(2.3)

We choose the gauge group to be simple, all �elds belong to the adjoint representation and are

written as Lie algebra matrices '(x) = 'a(x)ta, with
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[ta; tb] = f cabtc ; Tr(tatb) = �ab: (2.4)

Finally � is some numerical constant. We summarize the canonical dimensions and the ghost

numbers of the various �elds in Table 1.

A B b d c �c � ��

Dimension 1 1 2 2 0 2 0 2

Ghost number 0 0 0 0 1 �1 1 �1

Table 1: Dimensions and ghost numbers.

3 Symmetries of the action and Ward identities

The action (2.1) is invariant under the BRST transformation s :

sA� = �D�c� �[B�; �]; sB� = �D��� [B�; c];

sc = c2 + ��2; s� = f�; cg;

s�c = b; s�� = d;

sb = 0; sd = 0:

(3.1)

Since we are dealing with a topological �eld theory of Schwarz type, the only metric dependence

arises from the gauge �xing part of the action. Therefore, the energy momentum tensor is BRST

exact:

T�� = s��� (3.2)

with

��� = Tr(����cn
�A� � �cn�A� � �cn�A� + ��� ��n

�B� � ��n�B� � ��n�B�): (3.3)

Using the equations of motion, one gets for the divergence

of (3.3) the following expression

@���� = Tr(@��c
�S

�b
�A�

�S

�c
� n��c"���

�S

�B�

+ @� ��
�S

�b
�B�

�S

��
�

�m� ��"���
�S

�A�

+ n��c"���m
�d� n� ��"���m

�b) + tot: der:

(3.4)

Integrating (3.4) allows to derive the usual form for the topological supersymmetry only for the

case where1 n� = m� which we

will assume for the rest of the paper. Thus we have the following form for

1Actually one

could also insist in keeping di�erent gauge vectors since the breaking term is BRST exact. This breaking could be

controlled by coupling it to an

additional source and adding it to the action [7]
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the vector supersymmetry transformations �� :

��A� = �"���n
� ��; ��B� = �"���n

��c;

��c = A�; ��� = B�;

���c = 0; �� �� = 0;

��b = �@��c; ��d = �@� ��:

(3.5)

The transformations s and the supersymmetry transformations �� form an algebra which closes

on-shell:

s2 = f��; ��g = 0; fs; ��g = @� + Eq: of motion: (3.6)

In addition there exist two discrete symmetries 2 which leave the action (2.1) invariant:

c ! ��c ; � ! �� (3.7)

and

c ! �� ; �c ! � (3.8)

At the level of the generating functional of the connected Green

functions ZC , all these symmetries leads to a set of WI. The one which correspond to

the vector supersymmetry takes the form

V�ZC = Tr

Z
d3x

�
Jb@�

�ZC

�J�c
+ "���n

�J�B
�ZC

�J�c
+ Jc

�ZC

�J�A
+

+Jd@�
�ZC

�J��

+ "���n
�J�A

�ZC

�J��

+ J�
�ZC

�J�B

!
= 0:

(3.9)

In this formalism, the axial gauge is imposed by the two gauge

conditions :

Jb + n�
�ZC

�J�A
= 0;

Jd + n�
�ZC

�J
�
B

= 0:

(3.10)

As in any linear gauge there exist antighost equations which in the case of the axial gauge are local

[5]. In our case we have

two of them and they take the following form:

J�c � n�@�
�ZC

�Jc
+

�
Jb;

�ZC

�Jc

�
+ �

�
Jd;

�ZC

�J�

�
= 0;

J�� � n�@�
�ZC

�J�
+

�
Jb;

�ZC

�J�

�
+

�
Jd;

�ZC

�Jc

�
= 0:

(3.11)

2In fact, (3.7) and (3.8) imply the existence of additional anti-BRST-like

symmetries and anti-vector-like supersymmetries as in [4, 5].
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Finally, it is well known that in the axial gauge, due to the

decoupling of the ghosts, the Slavnov identity which express the invariance of the theory under

the BRST-transformation (3.1) takes the form of a

local WI. Therefore, one get the two following local gauge WI's

@�J
�

A �

�
J
�

A;
�ZC

�J�A

�
�

�
J
�

B ;
�ZC

�J�B

�
�

�
Jb;

�ZC

�Jb

�
�

�
Jd;

�ZC

�Jd

�
�

�

�
Jc;

�ZC

�Jc

�
�

�
J�c;

�ZC

�J�c

�
�

�
J�;

�ZC

�J�

�
�

(
J��;

�ZC

�J��

)
+ (n � @)

�ZC

�Jb
= 0

(3.12)

and

@�J
�
B � �

�
J�A;

�ZC

�J�B

�
�

�
J�B ;

�ZC

�J�A

�
�

�
Jb;

�ZC

�Jd

�
� �

�
Jd;

�ZC

�Jb

�
�

��

�
Jc;

�ZC

�J�

�
�

(
J�c;

�ZC

�J��

)
�

�
J�;

�ZC

�Jc

�
� �

�
J��;

�ZC

�J�c

�
+ (n � @)

�ZC

�Jd
= 0:

(3.13)

4 Consequences of the Symmetries

4.1 Equations of motion

Let us now investigate in some detail the meaning of the

relations of the last section, starting with the projection of the WI for the supersymmetry(3.9),

along the gauge �xed direction. Without loss of generality we can choose the gauge vector n� to

be (0; 0; 1). We

will denote this gauge �xed direction by u and the transverse coordinates by xtr = (xi); i = 1; 2.

Then,

VuZC = Tr

Z
d3x

 
Jb@u

�ZC

�J�c
+ Jc

�ZC

�JuA
+ Jd@u

�ZC

�J��

+ J�
�ZC

�JuB

!
= 0: (4.1)

Taking into accout the gauge conditions (3.10), the latter can

be written as

Tr

Z
d3x

�
JbX + JdY

�
= 0:

where X and Y are the most general forms compatible

with (4.1)

X = @u
�ZC

�J�c
+ �1

�
Jd;

�ZC

�J�c

�
+ �2

"
Jd;

�ZC

�J��

#
+ �3

�
Jb;

�ZC

�J�c

�
+ �4

"
Jb;

�ZC

�J��

#
� Jc = 0

Y = @u
�ZC

�J��

+ �1

�
Jd;

�ZC

�J�c

�
+ �2

"
Jd;

�ZC

�J��

#
+ �3

�
Jb;

�ZC

�J�c

�
+ �4

"
Jb;

�ZC

�J��

#
� J� = 0
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At this level, one can use the consistency condition between the two

equations we just found and the ghost equation (4.2) in order

to �x the arbitrary parameters. Then, the result is

Jc � n�@�
�ZC

�J�c
+

�
Jb;

�ZC

�J�c

�
+

"
Jd;

�ZC

�J��

#
= 0;

J� � n�@�
�ZC

�J��

+

"
Jb;

�ZC

�J��

#
+ �

�
Jd;

�ZC

�J�c

�
= 0:

(4.2)

which are nothing else than the ghost equations. Thus, the

equations of motion for the ghost sector are a consequence of the

gauge-�xed component of the supersymmetry WI, the gauge condition and the Slavnov identity.

For the gauge sector, let us consider the transverse component

of (3.9)

ViZC = Tr

Z
d3x

�
Jb@i

�ZC

�J�c
+ "jiJ

j
B

�ZC

�J�c
+ Jc

�ZC

�J iA
+

+Jd@i
�ZC

�J��

+ "jiJ
j

A

�ZC

�J��

+ J�
�ZC

�J iB

!
= 0:

(4.3)

together with the antighost equations (3.11) written as

functional operators acting on ZC�
@u

�

�Jc
�

�
Jb;

�

�Jc

�
� �

�
Jd;

�

�J�

��
ZC = J�c;�

@u
�

�J�
�

�
Jb;

�

�J�

�
�

�
Jd;

�

�Jc

��
ZC = J��:

(4.4)

Their consistency gives rise to the following identities�
@u

�

�J iA
�

�
Jd;

�

�J iA

�
� �

�
Jb;

�

�J iB

��
ZC = "jiJ

j
B � @iJd;�

@u
�

�J iB
�

�
Jd;

�

�J iB

�
�

�
Jb;

�

�J iA

��
ZC = "jiJ

j
A � @iJb:

(4.5)

which correspond to the equations of motion for the gauge �elds. This

concludes the analysis of the consequences of the supersymmetry for the equations

of motion.
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4.2 Calculation of the Propagators

Gauge conditions

We begin by looking at the gauge conditions (3.10) which imply the vanishing of the connected

Green functions involving the components A3 or B3

hAa
3
(x)

Q
i 'i(xi)i = 0

hBa
3
(x)

Q
i 'i(xi)i = 0

8'i (4.6)

with two exceptions
hAa

3
(x)bb(y)i = ��ab�(3)(x� y);

hBa
3
(x)db(y)i = ��ab�(3)(x� y):

(4.7)

Antighost equations

The antighost equations (4.2) give the following di�erential equations for the connected Green

functions involving one pair of ghost �elds:

@x3h�c
a(x)cb(y)i = �ab�(3)(x� y); (4.8)

@x3h��
a(x)�b(y)i = �ab�(3)(x� y) (4.9)

and
@x3hd

c1(z1)::d
cr(zr)b

b1(y1)::b
br(yr)c

b(y)�ca(x)i =

sX
j=1

fabjc hdc1(z1)::d
cr(zr)b

b1(y1)::
cbbj(yj)::bbr(yr)cb(y)�cc(yj)i �(x� yj) +

rX
i=1

facic hdc1(z1)::cdci(zi)::dcr(zr)bb1(y1)::bbr(yr)cb(y)��c(zi)i �(x� zi)

(4.10)

and
@x3hd

c1(z1)::d
cr(zr)b

b1(y1)::b
br(yr)c

b(y)��a(x)i =

sX
j=1

fabjc hdc1(z1)::d
cr(zr)b

b1(y1)::
cbbj(yj)::bbr(yr)cb(y)��c(yj)i �(x� yj) +

�
rX

i=1

facic hdc1(z1)::cdci(zi)::dcr(zr)bb1(y1)::bbr(yr)cb(y)�cc(zi)i �(x� zi):

(4.11)

The solutions of the equations (4.8) and

(4.9) are

h�ca(x)cb(y)i = �ab[�(x3 � y3) + �1]�
(2)(xtr � ytr); (4.12)

h��a(x)�b(y)i = �ab[�(x3 � y3) + �2]�
(2)(xtr � ytr) (4.13)

The form of the terms proportional to �1, �2 is dictated by transverse two dimensional Poincar�e
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invariance and scale invariance. Indeed, the latter forbids solutions of the type 1=(xtr�ytr)2 because

this term is not a well de�ned distribution. To give it a meaning would need the introduction of

UV subtraction point, i.e., of a dimensionful parameter which would break scale invariance. The

integration constant can be �xed with the help of the discrete symmetry of the action (3.7) to be

�1 = �2 = �
1

2
.

Integration of the equations (4.10) and (4.11) yields the following recursion relations for the Green

functions with one pair of ghosts:

hdc1(z1)::d
cr(zr)b

b1(y1)::b
bs(ys)c

b(y)�ca(x)i =

=
sX

j=1

fabjc [�(x3 � y3j ) + �(r; s)]�(2)(xtr � ytrj )�

�hdc1(z1)::d
cr(zr)b

b1(y1)::
cbbj(yj)::bbs(ys)cb(y)�cc(yj)i +

+
rX

i=1

facic [�(x3 � z3i ) + �(r; s)]�(2)(xtr � ztri )�

�hdc1(z1)::cdci(zi)::dcr(zr)bb1(y1)::bbs(ys)cb(y)��c(zi)i

(4.14)

and
hdc1(z1)::d

cr(zr)b
b1(y1)::b

bs(ys)c
b(y)��a(x)i =

=
sX

j=1

fabjc [�(x3 � y3j ) + �(r; s)]�(2)(xtr � ytrj )�

�hdc1(z1)::d
cr(zr)b

b1(y1)::
cbbj(yj)::bbs(ys)cb(y)��c(yj)i +

+�
rX

i=1

facic [�(x3 � z3i ) + �(r; s)]�(2)(xtr � ztri )�

�hdc1(z1)::cdci(zi)::dcr(zr)bb1(y1)::bbs(ys)cb(y)�cc(zi)i :

(4.15)

Using the discrete symmetry one could produce two additonal recursion relations which are not

written explicitly since they are not needed for our calculations. The integration constants are all

�xed to �(r; s) = �1

2
by the discrete symmetry (3.7) and Bose symmetry of the Lagrange multipliers

b and d.

Now we will discuss the recursion relations for some special values of r and s.

The case r = 0

For this discussion we will use a more symbolic notion i.e. we will drop indices and variables because

we only want to �nd the vanishing Green functions whereas the non vanishing Green functions can

always be obtained from the explicit recursion relations (4.14) and (4.15). From (4.14) we get

h(b)sc�ci =
P
h(b)s�1c�ci which ends up after s steps with the hc�ci propagator de�ned in (4.8). On

the contrary h(b)s��ci = 0 since the recursion relation stops with the vanishing Green function h��ci.

Using again the discrete symmetry we obtain h(b)s��ci = 0 and h(b)s���i =
P
h(b)s�1���i.

8



The case s = 0

In this case we have have to use (4.14) and (4.15) iteratively e.g. h(d)rc�ci =
P
h(d)r�1c��i =

h(d)r�2c�ci = : : : . The �nal result depends on wether the recursion relation ends up with hc�ci which

gives a non vanishing result or with hc��i which gives zero. Here we only want to compile the zero

results:

h(d)rc�ci = 0 and h(d)r���i = 0 if r is an odd integer.

h(d)r��ci = 0 and h(d)rc��i = 0 if r is an even integer.

The Green functions with additional ghosts, gauge �elds or Lagrange multipliers vanish in

general as a consequence of the antighost equations (4.2):

hXc�ci = hXc��i = hX�c�i = hX�c��i = 0 ; unless X = (b)m(d)n : (4.16)

Transverse supersymmetry

From equation (4.3) we get further relations along the same lines. For reasons of simpli�cation we

use the sloppy notation from the discussion above whenever possible.

The results for the two-point functions are:

hAa
i (x)B

b
j(y)i = "ij�

ab[�(x3 � y3)�
1

2
]�(2)(xtr � ytr) ; (4.17)

hba(x)Ab
i(y)i = ��

ab[�(x3 � y3)�
1

2
]@xi�

(2)(xtr � ytr) ; (4.18)

hda(x)Bb
i (y)i = ��

ab[�(x3 � y3)�
1

2
]@xi�

(2)(xtr � ytr) (4.19)

and hAAi = hBBi = hbbi = hddi = hdAi = hbBi = hc��i = h�c�i = 0. Furthermore we observe that

all two-point functions with one ghost and one bosonic �eld vanish.

For the higher Green functions we obtain the recursion relations

hbd1(w1)::b
dr(wr)d

c1(z1)::d
cs(zs)A

b1
l1
(y1)::A

bt
lt
(yt)B

a1
n1
(x1)::B

au
nu
(xu)

(
Ab
i(y)

Bb
i (y)

)
i =

=
rX

k=1

@wi

k

hbd1(w1)::
cbdk(wk)::b

dr(wr)(d)
s(A)t(B)u

(
cb(y)

�b(y)

)
�cdk(wk)i +

+
sX

k=1

@zi
k

h(b)rdc1(z1)::cdck(zk)::dcs(zs)(A)t(B)u
(

cb(y)

�b(y)

)
��ck(zk)i +

+
tX

k=1

"ilkh(b)
r(d)sAb1

l1
(y1)::

d
Abk
lk
(yk)::A

bt
lt
(yt)(B)

u

(
cb(y)

�b(y)

)
��bk(yk)i +

+
uX

k=1

"inkh(b)
r(d)s(A)tBa1

n1
(x1)::dBak

nk
(xk)::B

au
nu
(xu)

(
cb(y)

�b(y)

)
�cbk(yk)i:

(4.20)

In the following we want to specify these recursion relations for special values of r, s, t and u

to demonstrate that all Green functions can be obtained from our recursion relations. All Green

functions with one pair of ghosts have been obtained in the previous subsection. Now we want to

calculate the remaining Green functions with only bosonic �elds and at least one A or B �eld.
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The case t = u = 0

We obtain from (4.20):

h(b)r(d)sAi =
X

@h(b)r�1(d)sc�ci+
X

@h(b)r(d)s�1c��i

so the calculations breaks down to summing over already known Green functions. The same holds

for h(b)r(d)sBi .

The case r = s = 0

We obtain

h(A)t(B)uAi = "h(A)t(B)u�1c�ci+ "h(A)t�1(B)uc��i

Using (4.16) we �nd h(A)a(B)bi = 0 unless a = 1 and b = 1 which yields the two-point function

hABi .

The case s = u = 0

In this case the relation (4.20) takes the form:

h(b)r(A)t

 
A

B

!
i =

X
@h(b)r�1(A)t

 
c

�

!
�ci+

X
"h(b)r(A)t�1

 
c

�

!
��i

For t = 0 we get the results:

h(b)rAi =
P

@h(b)r�1c�ci and h(b)rBi = 0

For t = 1:

h(b)rABi =
P

"h(b)r���i and h(b)rAAi = 0.

The case r = u = 0

In this case the relation (4.20) takes the form:

h(d)s(A)t
 

A

B

!
i =

X
@h(d)s�1(A)t

 
c

�

!
��i+

X
"h(d)s(A)t�1

 
c

�

!
��i

For t = 0 we get the results:

h(d)sAi = 0 for s odd and h(d)sBi = 0 for s even.

For t = 1:

h(d)sAAi = 0 for s even and h(d)sABi = 0 for s odd.

The case r = t = 0

In this case the relation (4.20) takes the form:

h(d)s(B)u
 

A

B

!
i =

X
@h(d)s�1(B)u

 
c

�

!
��i+

X
"h(d)s(B)u�1

 
c

�

!
�ci
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For t = 0 we get the results:

h(d)sAi = 0 for s odd and h(d)sBi = 0 for s even.

For t = 1:

h(d)sBAi = 0 for s odd and h(d)sBBi = 0 for s even.

Gauge invariance

The two gauge symmetries (3.12) and (3.13) do not give a lot of new information besides consistency

checks and the fact that all correlators consisting only of the Lagrange multipliers vanish:

hba1(x1)::b
am(xm)d

b1(y1)::d
bn(yn)i = 0 8 m; n

This is the unique solution obeying dimensional and scaling arguments.

5 Concluding Remarks

The main result of our study is that the Green functions of the model are the unique solutions

of the Ward-identities de�ning the theory. Furthermore it turned out that the topological vector

supersymmetry imposed a rather unexpected restriction on the

a priori independent gauge vectors. It is also worth noticing that the Green functions correspond

to tree graphs only. Note also that in principle there are loop graphs with external b and d �elds

only, however, as in Chern-Simons theory [14], the gauge-�eld and the ghost �eld contributions to

these graphs cancel exactly due to the topological supersymmetry. Having investigated here the

three-dimensional BF model it is now natural to apply the axial gauge also to higher dimensional

BF models. It would be highly interesting to know wether the methods developped

here and in [8] are also applicable to these cases.
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