6,845 research outputs found
Room-Temperature Alternative to the Arbuzov Reaction: The Reductive Deoxygenation of Acyl Phosphonates
The reductive deoxygenation of acyl phosphonates using a WolffâKishner-like sequence is described. This transformation allows direct access to alkyl phosphonates from acyl phosphonates at room temperature. The method can be combined with acyl phosphonate synthesis into a one pot, four-step procedure for the conversion of carboxylic acids into alkyl phosphonates. The methodology works well for a variety of aliphatic acids and shows a functional group tolerance similar to that of other hydrazone-forming reactions
Channeled propagation of solar particles
Bartley (1966) and McCracken and Ness (1966) identified bundles of interplanetary magnetic field (IMF) lines that differed in direction from the interplanetary field lines in which they were imbedded. These bundles, called filaments differed in direction by as much as several tens of degrees from the surrounding field. The filaments werre first noticed due to the large and sudden change in flow direction of highly anisotropic solar flare protons in the energy range 1 to 13 MeV. Passage of the filaments over the spacecraft required a few hours, implying a diameter for the filaments of approximately 3 x 10 to the 6th power km at a distance of 1 AU from the Sun. In 1968, Jakipii and Parker used Leighton's hypothesis of random walk of magnetic field lines associated with granules and supergranules (1964) to develop a picture of an interplanetary medium composed of a tangle of field lines frozen into the solar wind, but whose feet were carried about by the random motions at the solar surface. Jakipii and Parker noted that using a correlation length of 15,000 km - about the radius of a supergranule - the magnetic structure would be 3 x 10 to the 6th power km in size of the filaments as determined by Bartley and McCracken and Ness. These workers did not find changes in the solar particle intensity, anisotropy ratio or energy spectrum as the spacecraft entered the filament
Particle propagation channels in the solar wind
The intensities of low energy solar-interplanetary electrons and ions at 1 AU occasionally change in a square wave manner. The changes may be increases or decreases and they typically have durations of from one hour to a few hours. In some cases these channels are bounded by discontinuities in the interplanetary field and the plasma properties differ from the surrounding solar wind. In one case solar flare particles were confined to a channel of width 3 x 10 to the 6th km at Earth. At the Sun this dimension extrapolates to about 12,000 km, a size comparable to small flares
Probing the role of the cationâÏ interaction in the binding sites of GPCRs using unnatural amino acids
We describe a general application of the nonsense suppression methodology for unnatural amino acid incorporation to probe drugâreceptor interactions in functional G protein-coupled receptors (GPCRs), evaluating the binding sites of both the M2 muscarinic acetylcholine receptor and the D2 dopamine receptor. Receptors were expressed in Xenopus oocytes, and activation of a G protein-coupled, inward-rectifying K^+ channel (GIRK) provided, after optimization of conditions, a quantitative readout of receptor function. A number of aromatic amino acids thought to be near the agonist-binding site were evaluated. Incorporation of a series of fluorinated tryptophan derivatives at W6.48 of the D2 receptor establishes a cationâÏ interaction between the agonist dopamine and W6.48, suggesting a reorientation of W6.48 on agonist binding, consistent with proposed ârotamer switchâ models. Interestingly, no comparable cationâÏ interaction was found at the aligning residue in the M2 receptor
Quasiperpendicular high Mach number Shocks
Shock waves exist throughout the universe and are fundamental to
understanding the nature of collisionless plasmas. Reformation is a process,
driven by microphysics, which typically occurs at high Mach number
supercritical shocks. While ongoing studies have investigated this process
extensively both theoretically and via simulations, their observations remain
few and far between. In this letter we present a study of very high Mach number
shocks in a parameter space that has been poorly explored and we identify
reformation using in situ magnetic field observations from the Cassini
spacecraft at 10 AU. This has given us an insight into quasi-perpendicular
shocks across two orders of magnitude in Alfven Mach number (MA) which could
potentially bridge the gap between modest terrestrial shocks and more exotic
astrophysical shocks. For the first time, we show evidence for cyclic
reformation controlled by specular ion reflection occurring at the predicted
timescale of ~0.3 {\tau}c, where {\tau}c is the ion gyroperiod. In addition, we
experimentally reveal the relationship between reformation and MA and focus on
the magnetic structure of such shocks to further show that for the same MA, a
reforming shock exhibits stronger magnetic field amplification than a shock
that is not reforming.Comment: Accepted and Published in Physical Review Letters (2015
High resolution radio observations of the colliding-wind binary WR140
Milli-arcsecond resolution Very Long Baseline Array (VLBA) observations of
the archetype WR+O star colliding-wind binary (CWB) system WR140 are presented
for 23 epochs between orbital phases 0.74 and 0.97. At 8.4 GHz, the emission in
the wind-collision region (WCR) is clearly resolved as a bow-shaped arc that
rotates as the orbit progresses. We interpret this rotation as due to the O
star moving from SE to approximately E of the WR star, which leads to solutions
for the orbit inclination of 122+/-5 deg, the longitude of the ascending node
of 353+/-3 deg, and an orbit semi-major axis of 9.0+/-0.5 mas. The distance to
WR140 is determined to be 1.85+/-0.16 kpc, which requires the O star to be a
supergiant. The inclination implies the mass of the WR and O star to be 20+/-4
and 54+/-10 solar masses respectively. We determine a wind-momentum ratio of
0.22, with an expected half-opening angle for the WCR of 63 deg, consistent
with 65+/-10 deg derived from the VLBA observations. Total flux measurements
from Very Large Array (VLA) observations show the radio emission from WR140 is
very closely the same from one orbit to the next, pointing strongly toward
emission, absorption and cooling mechanism(s) that are controlled largely by
the orbital motion. The synchrotron spectra evolve dramatically through the
orbital phases observed, exhibiting both optically thin and optically thick
emission. We discuss a number of absorption and cooling mechanisms that may
determine the evolution of the synchrotron spectrum with orbital phase.Comment: Accepted by ApJ, to appear in v623, April 20, 2005. 14 pages, 13
figs, requires emulateapj.cls. A version with full resolution figs can be
obtained from http://www.drao.nrc.ca/~smd/preprint/wr140_data.pd
- âŠ