2,052 research outputs found

    Ionization heating in rare-gas clusters under intense XUV laser pulses

    Full text link
    The interaction of intense extreme ultraviolet (XUV) laser pulses (λ=32 nm\lambda=32\rm\,nm, I=1011−14I=10^{11-14}\,W/cm2^2) with small rare-gas clusters (Ar147_{147}) is studied by quasi-classical molecular dynamics simulations. Our analysis supports a very general picture of the charging and heating dynamics in finite samples under short-wavelength radiation that is of relevance for several applications of free-electron lasers. First, up to a certain photon flux, ionization proceeds as a series of direct photoemission events producing a jellium-like cluster potential and a characteristic plateau in the photoelectron spectrum as observed in [Bostedt {\it et al.}, Phys. Rev. Lett. {\bf 100}, 013401 (2008)]. Second, beyond the onset of photoelectron trapping, nanoplasma formation leads to evaporative electron emission with a characteristic thermal tail in the electron spectrum. A detailed analysis of this transition is presented. Third, in contrast to the behavior in the infrared or low vacuum ultraviolet range, the nanoplasma energy capture proceeds via {\it ionization heating}, i.e., inner photoionization of localized electrons, whereas collisional heating of conduction electrons is negligible up to high laser intensities. A direct consequence of the latter is a surprising evolution of the mean energy of emitted electrons as function of laser intensity.Comment: figure problems resolve

    Performance of a Light-Weight Ablative Thermal Protection Material for the Stardust Mission Sample Return Capsule

    Get PDF
    New tests and analyses are reported that were carried out to resolve testing uncertainties in the original development and qualification of a lightweight ablative material used for the Stardust spacecraft forebody heat shield. These additional arcjet tests and analyses confirmed the ablative and thermal performance of low density Phenolic Impregnated Carbon Ablator (PICA) material used for the Stardust design. Testing was done under conditions that simulate the peak convective heating conditions (1200 W/cm2 and 0.5 atm) expected during Earth entry of the Stardust Sample Return Capsule. Test data and predictions from an ablative material response computer code for the in-depth temperatures were compared to guide iterative adjustment of material thermophysical properties used in the code so that the measured and predicted temperatures agreed. The PICA recession rates and maximum internal temperatures were satisfactorily predicted by the computer code with the revised properties. Predicted recession rates were also in acceptable agreement with measured rates for heating conditions 37% greater than the nominal peak heating rate of 1200 W/sq cm. The measured in-depth temperature response data show consistent temperature rise deviations that may be caused by an undocumented endothermic process within the PICA material that is not accurately modeled by the computer code. Predictions of the Stardust heat shield performance based on the present evaluation provide evidence that the maximum adhesive bondline temperature will be much lower than the maximum allowable of 250 C and an earlier design prediction. The re-evaluation also suggests that even with a 25 percent increase in peak heating rates, the total recession of the heat shield would be a small fraction of the as-designed thickness. These results give confidence in the Stardust heat shield design and confirm the potential of PICA material for use in new planetary probe and sample return applications

    Nonlinear magnetic field dependence of the conductance in d-wave NIS tunnel junctions

    Full text link
    The ab-plane NIS-tunnelling conductance in d-wave superconductors shows a zero-bias conductance peak which is predicted to split in a magnetic field. In a pure d-wave superconductor the splitting is linear for fields small on the scale of the thermodynamic critical field. The field dependence is shown to be nonlinear, even at low fields, in the vicinity of a surface phase transition into a local time-reversal symmetry breaking state. The field evolution of the conductance is sensitive to temperature, doping, and the symmetry of the sub-dominant pairing channel.Comment: 4 pages, 4 figure

    Ablation of carbonaceous materials in a hydrogen-helium arc-jet flow

    Get PDF
    The stagnation-point ablation rates of a graphite, a carbon-carbon composite, and four carbon-phenolic materials are measured in an arc-jet wind tunnel with a 50% hydrogen-50% helium mixture as the test gas. Flow environments are determined through measurements of static and impact pressures, heat-transfer rates to a calorimeter, and radiation spectra, and through numerical calculation of the flow through the wind tunnel, spectra, and heat-transfer rates. The environments so determined are: impact pressure approx. 3 atm, Mach number approx. 2.1, convective heat-transfer rate approx. 14 kw/sq cm, and radiative heat-transfer rate approx. 7 kw/sq cm in the absence of ablation. Ablation rates are determined from the measured rates of mass loss and recession of the ablation specimens. Compared with the predicted ablation rates obtained by running RASLE and CMA codes, the measured rates are higher by about 15% for all tested materials

    Coherent control of nanomagnet dynamics via ultrafast spin torque pulses

    Get PDF
    The magnetization orientation of a nanoscale ferromagnet can be manipulated using an electric current via the spin transfer effect. Time domain measurements of nanopillar devices at low temperatures have directly shown that magnetization dynamics and reversal occur coherently over a timescale of nanoseconds. By adjusting the shape of a spin torque waveform over a timescale comparable to the free precession period (100-400 ps), control of the magnetization dynamics in nanopillar devices should be possible. Here we report coherent control of the free layer magnetization in nanopillar devices using a pair of current pulses as narrow as 30 ps with adjustable amplitudes and delay. We show that the switching probability can be tuned over a broad range by timing the current pulses with the underlying free-precession orbits, and that the magnetization evolution remains coherent for more than 1 ns even at room temperature. Furthermore, we can selectively induce transitions along free-precession orbits and thereby manipulate the free magnetic moment motion. We expect this technique will be adopted for further elucidating the dynamics and dissipation processes in nanomagnets, and will provide an alternative for spin torque driven spintronic devices, such as resonantly pumping microwave oscillators, and ultimately, for efficient reversal of memory bits in magnetic random access memory (MRAM).Comment: 4 pages, 3 figures, submitted to Nature Physic

    Towards zero solid waste: utilising tannery waste as a protein source for poultry feed

    Get PDF
    Zero waste is now a strongly emerging issue for sustainable industrial development where minimisation and utilisation of waste are a priority in the leather industry. In a tannery hides and skins converted in to leather through various processes. Approximately 20% (w/w) of the chrome containing tannery solid waste (TSW) is generated from one tonne of raw hides and skins. However, tannery solid waste may also be a resource if it is managed expertly as we move towards zero waste. This research illustrates the potential of tannery solid waste as a poultry feed additive. An oxidation method was used to achieve 95% of dechroming rate of chrome tanned waste followed with thermal and enzymatic treatment to produce gelatin solution and collagen concentrates. The thermal stability and fibre structure of samples were analysed by Differential Scanning Calorimeter (DSC) and Scanning Electron Microscope (SEM). Protein content and fourteen amino acid concentrations were determined using amino acid analysis. High Performance Liquid Chromatography (HPLC) was used to compare the amino acid composition with wheat and soya bean meal that is conventionally used in poultry feed. The nutrient requirements for poultry feed vary according to the purpose for which they have been developed. The high content of arginine, leucine, threonine, serine and methionine in the extract were of a sufficient level for poultry feed. Hexavalent chromium test was performed and showed that levels of the metal were low enough to be used in feed additives. In addition, the extracted product showed 75% digestibility (in vitro) and appears that treated TSW may be utilised in poultry feed, this demonstrates a clear example of waste utilisation. In Bangladesh plans are being formed to use the extract in poultry feed production

    Methods of isolation and identification of pathogenic and potential pathogenic bacteria from skins and tannery effluents

    Get PDF
    Currently there is no standard protocol available within the leather industry to isolate and identify pathogenic bacteria from hides, skins or tannery effluent. This study was therefore carried out to identify simple but effective methods for isolation and identification of bacterial pathogens from the effluent and skins during leather processing. Identification methods based on both phenotypic and genotypic characteristics were investigated. Bacillus cereus and Pseudomonas aeruginosa were used as indicator bacteria to evaluate the isolation and identification methods. Decontaminated calfskins were inoculated with a pure culture of the above mentioned bacterial species followed by a pre-tanning and chromium tanning processes. Effluent samples were collected and skins were swabbed at the end of each processing stage. Bacterial identification was carried out based on the phenotypic characteristics; such as colony appearance on selective solid media, cell morphology following a standard Gram-staining and spore staining techniques, and biochemical reactions, e.g., the ability of a bacterial species to ferment particular sugars and ability to produce certain enzymes. Additionally, an identification system based on bacterial phenotypic characteristics, known as Biolog® system was applied. A pulsed-filed gel electrophoresis (PFGE) method for bacterial DNA fingerprinting was also evaluated and used for the identification of the inoculated bacteria. The methods described in the study were found to be effective for the identification of pathogenic bacteria from skins and effluent
    • …
    corecore