1,849 research outputs found

    Large-Scale Music Genre Analysis and Classification Using Machine Learning with Apache Spark

    Get PDF
    The trend for listening to music online has greatly increased over the past decade due to the number of online musical tracks. The large music databases of music libraries that are provided by online music content distribution vendors make music streaming and downloading services more accessible to the end-user. It is essential to classify similar types of songs with an appropriate tag or index (genre) to present similar songs in a convenient way to the end-user. As the trend of online music listening continues to increase, developing multiple machine learning models to classify music genres has become a main area of research. In this research paper, a popular music dataset GTZAN which contains ten music genres is analysed to study various types of music features and audio signals. Multiple scalable machine learning algorithms supported by Apache Spark, including naïve Bayes, decision tree, logistic regression, and random forest, are investigated for the classification of music genres. The performance of these classifiers is compared, and the random forest performs as the best classifier for the classification of music genres. Apache Spark is used in this paper to reduce the computation time for machine learning predictions with no computational cost, as it focuses on parallel computation. The present work also demonstrates that the perfect combination of Apache Spark and machine learning algorithms reduces the scalability problem of the computation of machine learning predictions. Moreover, different hyperparameters of the random forest classifier are optimized to increase the performance efficiency of the classifier in the domain of music genre classification. The experimental outcome shows that the developed random forest classifier can establish a high level of performance accuracy, especially for the mislabelled, distorted GTZAN dataset. This classifier has outperformed other machine learning classifiers supported by Apache Spark in the present work. The random forest classifier manages to achieve 90% accuracy for music genre classification compared to other work in the same domain

    Peeling from a patterned thin elastic film

    Full text link
    Inspired by the observation that many naturally occurring adhesives arise as textured thin films, we consider the displacement controlled peeling of a flexible plate from an incision-patterned thin adhesive elastic layer. We find that crack initiation from an incision on the film occurs at a load much higher than that required to propagate it on a smooth adhesive surface; multiple incisions thus cause the crack to propagate intermittently. Microscopically, this mode of crack initiation and propagation in geometrically confined thin adhesive films is related to the nucleation of cavitation bubbles behind the incision which must grow and coalesce before a viable crack propagates. Our theoretical analysis allows us to rationalize these experimental observations qualitatively and quantitatively and suggests a simple design criterion for increasing the interfacial fracture toughness of adhesive films.Comment: 8 pages, To appear in Proceedings of Royal Society London, Ser.

    Magnetoelectric Effect and Spontaneous Polarization in HoFe3_3(BO3_3)4_4 and Ho0.5_{0.5}Nd0.5_{0.5}Fe3_3(BO3_3)4_4

    Full text link
    The thermodynamic, magnetic, dielectric, and magnetoelectric properties of HoFe3_3(BO3_3)4_4 and Ho0.5_{0.5}Nd0.5_{0.5}Fe3_3(BO3_3)4_4 are investigated. Both compounds show a second order Ne\'{e}l transition above 30 K and a first order spin reorientation transition below 10 K. HoFe3_3(BO3_3)4_4 develops a spontaneous electrical polarization below the Ne\'{e}l temperature (TN_N) which is diminished in external magnetic fields. No magnetoelectric effect could be observed in HoFe3_3(BO3_3)4_4. In contrast, the solid solution Ho0.5_{0.5}Nd0.5_{0.5}Fe3_3(BO3_3)4_4 exhibits both, a spontaneous polarization below TN_N and a magnetoelectric effect at higher fields that extends to high temperatures. The superposition of spontaneous polarization, induced by the internal magnetic field in the ordered state, and the magnetoelectric polarizations due to the external field results in a complex behavior of the total polarization measured as a function of temperature and field.Comment: 12 pages, 15 figure

    Fruit development is actively restricted in the absence of fertilization in Arabidopsis

    Get PDF
    Flowering plants usually require fertilization to form fruit and seed and to initiate floral organ abscission in structures that do not contribute to the fruit. An Arabidopsis mutant that initiates seedless fruit without fertilization (fwf) or parthenocarpy was isolated and characterized to understand the factors regulating the transition between the mature flower and the initiation of seed and fruit development. The fwf mutant is fertile and has normal plant growth and stature. It sets fertile seed following self-pollination and fertilization needs to be prevented to observe parthenocarpy. The initiation of parthenocarpic siliques (fruit) was found to be dependent upon carpel valve identity conferred by FRUITFULL but was independent of the perception of gibberellic acid, shown to stimulate parthenocarpy in Arabidopsis following exogenous application. The recessive nature of fwf is consistent with the involvement of FWF in processes that inhibit fruit growth and differentiation in the absence of fertilization. The enhanced cell division and expansion in the silique mesocarp layer, and increased lateral vascular bundle development imply FWF has roles also in modulating silique growth post-fertilization. Parthenocarpy was inhibited by the presence of other floral organs suggesting that both functional FWF activity and inter-organ communication act in concert to prevent fruit initiation in the absence of fertilization

    Quantum Control of the Hyperfine Spin of a Cs Atom Ensemble

    Full text link
    We demonstrate quantum control of a large spin-angular momentum associated with the F=3 hyperfine ground state of 133Cs. A combination of time dependent magnetic fields and a static tensor light shift is used to implement near-optimal controls and map a fiducial state to a broad range of target states, with yields in the range 0.8-0.9. Squeezed states are produced also by an adiabatic scheme that is more robust against errors. Universal control facilitates the encoding and manipulation of qubits and qudits in atomic ground states, and may lead to improvement of some precision measurements.Comment: 4 pages, 4 figures (color

    Dynamical Model for Chemically Driven Running Droplets

    Full text link
    We propose coupled evolution equations for the thickness of a liquid film and the density of an adsorbate layer on a partially wetting solid substrate. Therein, running droplets are studied assuming a chemical reaction underneath the droplets that induces a wettability gradient on the substrate and provides the driving force for droplet motion. Two different regimes for moving droplets -- reaction-limited and saturated regime -- are described. They correspond to increasing and decreasing velocities with increasing reaction rates and droplet sizes, respectively. The existence of the two regimes offers a natural explanation of prior experimental observations.Comment: 4 pages, 5 figure

    Tautomeric mutation: A quantum spin modelling

    Full text link
    A quantum spin model representing tautomeric mutation is proposed for any DNA molecule. Based on this model, the quantum mechanical calculations for mutational rate and complementarity restoring repair rate in the replication processes are carried out. A possible application to a real biological system is discussed.Comment: 7 pages (no figures
    corecore