Inspired by the observation that many naturally occurring adhesives arise as
textured thin films, we consider the displacement controlled peeling of a
flexible plate from an incision-patterned thin adhesive elastic layer. We find
that crack initiation from an incision on the film occurs at a load much higher
than that required to propagate it on a smooth adhesive surface; multiple
incisions thus cause the crack to propagate intermittently. Microscopically,
this mode of crack initiation and propagation in geometrically confined thin
adhesive films is related to the nucleation of cavitation bubbles behind the
incision which must grow and coalesce before a viable crack propagates. Our
theoretical analysis allows us to rationalize these experimental observations
qualitatively and quantitatively and suggests a simple design criterion for
increasing the interfacial fracture toughness of adhesive films.Comment: 8 pages, To appear in Proceedings of Royal Society London, Ser.