317 research outputs found

    Photon polarization and Wigner's little group

    Full text link
    To discuss one-photon polarization states we find an explicit form of the Wigner's little group element in the massless case for arbitrary Lorentz transformation. As is well known, when analyzing the transformation properties of the physical states, only the value of the phase factor is relevant. We show that this phase factor depends only on the direction of the momentum k/k\vec{k}/|\vec{k}| and does not depend on the frequency k0k^0. Finally, we use this observation to discuss the transformation properties of the linearly polarized photons and the corresponding reduced density matrix. We find that they transform properly under Lorentz group.Comment: Version published in Phys. Rev. A, few typos correcte

    Einstein-Podolsky-Rosen correlations of Dirac particles - quantum field theory approach

    Full text link
    We calculate correlation function in the Einstein--Podolsky--Rosen type of experiment with massive relativistic Dirac particles in the framework of the quantum field theory formalism. We perform our calculations for states which are physically interesting and transforms covariantly under the full Lorentz group action, i.e. for pseudoscalar and vector state.Comment: 9 pages, 2 figures. Published versio

    Helicity correlations of vector bosons

    Full text link
    We calculate the helicity and polarization correlation functions in the Einstein-Podolsky-Rosen-type experiments with relativistic vector bosons. We show that the linear polarization correlation function in the appriopriately chosen state in the massless limit is the same as the correlation function in the scalar two-photon state. We show also that the polarization correlation function violate the Clauser-Horne-Shimony-Holt inequality and that the degree of this violation can increase with the particle momentum.Comment: 8 pages, 3 figure

    Unstable particles as open quantum systems

    Full text link
    We present the probability preserving description of the decaying particle within the framework of quantum mechanics of open systems taking into account the superselection rule prohibiting the superposition of the particle and vacuum. In our approach the evolution of the system is given by a family of completely positive trace preserving maps forming one-parameter dynamical semigroup. We give the Kraus representation for the general evolution of such systems which allows one to write the evolution for systems with two or more particles. Moreover, we show that the decay of the particle can be regarded as a Markov process by finding explicitly the master equation in the Lindblad form. We also show that there are remarkable restrictions on the possible strength of decoherence.Comment: 11 pp, 2 figs (published version

    PDB3 Epidemiology, Patient Burden and Related Costs of Obesity in China

    Get PDF

    Urinary bladder diverticulum as an unusual content of the inguinal canal

    Get PDF
    The inguinal urinary bladder hernia is a rare pathology observed mostly in males. A new case of asymptomatic reducible acquired inguinal hernia was revealed in a 54-year-old male during computed tomography (CT) undertaken for oncological follow-up. The right nephrectomy was previously performed due to clear cell carcinoma. The hernia was not visible on the CT 6 months before and on ultrasound performed after voiding. Slight herniation with a wide invagination of transversalis fascia but with empty bladder was seen on CT 4 months after the initial detection of hernia

    Destruction of states in quantum mechanics

    Full text link
    A description of destruction of states on the grounds of quantum mechanics rather than quantum field theory is proposed. Several kinds of maps called supertraces are defined and used to describe the destruction procedure. The introduced algorithm can be treated as a supplement to the von Neumann-Lueders measurement. The discussed formalism may be helpful in a description of EPR type experiments and in quantum information theory.Comment: 14 pp, 1 eps figure, LaTeX2e using iopart class. Final version, will be published in J. Phys. A: Math. Ge

    Relativistic entanglement in single-particle quantum states using Non-Linear entanglement witnesses

    Full text link
    In this study, the spin-momentum correlation of one massive spin-1/2 and spin-1 particle states, which are made based on projection of a relativistic spin operator into timelike direction is investigated. It is shown that by using Non-Linear entanglement witnesses (NLEWs), the effect of Lorentz transformation would decrease both the amount and the region of entanglement.Comment: 16 pages, 2 figures; to be published in Quantum Inf Process, 10.1007/s11128-011-0289-z (2011

    Lorentz-covariant, unitary evolution of a relativistic Majorana qubit

    Get PDF
    We formulate a covariant description of a relativistic qubit identified with an irreducible set of quantum spin states of a Majorana particle with a sharp momentum. We treat the particle’s four-momentum as an external parameter. We show that it is possible to define an interesting time evolution of the spin density matrix of such a qubit. This evolution is manifestly Lorentz covariant in the bispinor representation and unitary in the spin representation. Moreover, during this evolution the Majorana particle undergoes an uniformly accelerated motion. We classify possible types of such motions, and finally we illustrate the behaviour of the polarization vector of the Majorana qubit during the evolution in some special cases

    Lorentz-covariant quantum mechanics and preferred frame

    Full text link
    In this paper the relativistic quantum mechanics is considered in the framework of the nonstandard synchronization scheme for clocks. Such a synchronization preserves Poincar{\'e} covariance but (at least formally) distinguishes an inertial frame. This enables to avoid the problem of a noncausal transmision of information related to breaking of the Bell's inequalities in QM. Our analysis has been focused mainly on the problem of existence of a proper position operator for massive particles. We have proved that in our framework such an operator exists for particles with arbitrary spin. It fulfills all the requirements: it is Hermitean and covariant, it has commuting components and moreover its eigenvectors (localised states) are also covariant. We have found the explicit form of the position operator and have demonstrated that in the preferred frame our operator coincides with the Newton--Wigner one. We have also defined a covariant spin operator and have constructed an invariant spin square operator. Moreover, full algebra of observables consisting of position operators, fourmomentum operators and spin operators is manifestly Poincar\'e covariant in this framework. Our results support expectations of other authors (Bell, Eberhard) that a consistent formulation of quantum mechanics demands existence of a preferred frame.Comment: 21 pages, LaTeX file, no figure
    corecore