317 research outputs found
Photon polarization and Wigner's little group
To discuss one-photon polarization states we find an explicit form of the
Wigner's little group element in the massless case for arbitrary Lorentz
transformation. As is well known, when analyzing the transformation properties
of the physical states, only the value of the phase factor is relevant. We show
that this phase factor depends only on the direction of the momentum
and does not depend on the frequency . Finally, we use
this observation to discuss the transformation properties of the linearly
polarized photons and the corresponding reduced density matrix. We find that
they transform properly under Lorentz group.Comment: Version published in Phys. Rev. A, few typos correcte
Einstein-Podolsky-Rosen correlations of Dirac particles - quantum field theory approach
We calculate correlation function in the Einstein--Podolsky--Rosen type of
experiment with massive relativistic Dirac particles in the framework of the
quantum field theory formalism. We perform our calculations for states which
are physically interesting and transforms covariantly under the full Lorentz
group action, i.e. for pseudoscalar and vector state.Comment: 9 pages, 2 figures. Published versio
Helicity correlations of vector bosons
We calculate the helicity and polarization correlation functions in the
Einstein-Podolsky-Rosen-type experiments with relativistic vector bosons. We
show that the linear polarization correlation function in the appriopriately
chosen state in the massless limit is the same as the correlation function in
the scalar two-photon state. We show also that the polarization correlation
function violate the Clauser-Horne-Shimony-Holt inequality and that the degree
of this violation can increase with the particle momentum.Comment: 8 pages, 3 figure
Unstable particles as open quantum systems
We present the probability preserving description of the decaying particle
within the framework of quantum mechanics of open systems taking into account
the superselection rule prohibiting the superposition of the particle and
vacuum. In our approach the evolution of the system is given by a family of
completely positive trace preserving maps forming one-parameter dynamical
semigroup. We give the Kraus representation for the general evolution of such
systems which allows one to write the evolution for systems with two or more
particles. Moreover, we show that the decay of the particle can be regarded as
a Markov process by finding explicitly the master equation in the Lindblad
form. We also show that there are remarkable restrictions on the possible
strength of decoherence.Comment: 11 pp, 2 figs (published version
Urinary bladder diverticulum as an unusual content of the inguinal canal
The inguinal urinary bladder hernia is a rare pathology observed mostly in males. A new case of asymptomatic reducible acquired inguinal hernia was revealed in a 54-year-old male during computed tomography (CT) undertaken for oncological follow-up. The right nephrectomy was previously performed due to clear cell carcinoma. The hernia was not visible on the CT 6 months before and on ultrasound performed after voiding. Slight herniation with a wide invagination of transversalis fascia but with empty bladder was seen on CT 4 months after the initial detection of hernia
Destruction of states in quantum mechanics
A description of destruction of states on the grounds of quantum mechanics
rather than quantum field theory is proposed. Several kinds of maps called
supertraces are defined and used to describe the destruction procedure. The
introduced algorithm can be treated as a supplement to the von Neumann-Lueders
measurement. The discussed formalism may be helpful in a description of EPR
type experiments and in quantum information theory.Comment: 14 pp, 1 eps figure, LaTeX2e using iopart class. Final version, will
be published in J. Phys. A: Math. Ge
Relativistic entanglement in single-particle quantum states using Non-Linear entanglement witnesses
In this study, the spin-momentum correlation of one massive spin-1/2 and
spin-1 particle states, which are made based on projection of a relativistic
spin operator into timelike direction is investigated. It is shown that by
using Non-Linear entanglement witnesses (NLEWs), the effect of Lorentz
transformation would decrease both the amount and the region of entanglement.Comment: 16 pages, 2 figures; to be published in Quantum Inf Process,
10.1007/s11128-011-0289-z (2011
Lorentz-covariant, unitary evolution of a relativistic Majorana qubit
We formulate a covariant description of a relativistic qubit identified with an irreducible set of quantum spin states of a Majorana particle with a sharp momentum. We treat the particle’s four-momentum as an external parameter. We show that it is possible to define an interesting time evolution of the spin density matrix of such a qubit. This evolution is manifestly Lorentz covariant in the bispinor representation and unitary in the spin representation. Moreover, during this evolution the Majorana particle undergoes an uniformly accelerated motion. We classify possible types of such motions, and finally we illustrate the behaviour of the polarization vector of the Majorana qubit during the evolution in some special cases
Lorentz-covariant quantum mechanics and preferred frame
In this paper the relativistic quantum mechanics is considered in the
framework of the nonstandard synchronization scheme for clocks. Such a
synchronization preserves Poincar{\'e} covariance but (at least formally)
distinguishes an inertial frame. This enables to avoid the problem of a
noncausal transmision of information related to breaking of the Bell's
inequalities in QM. Our analysis has been focused mainly on the problem of
existence of a proper position operator for massive particles. We have proved
that in our framework such an operator exists for particles with arbitrary
spin. It fulfills all the requirements: it is Hermitean and covariant, it has
commuting components and moreover its eigenvectors (localised states) are also
covariant. We have found the explicit form of the position operator and have
demonstrated that in the preferred frame our operator coincides with the
Newton--Wigner one. We have also defined a covariant spin operator and have
constructed an invariant spin square operator. Moreover, full algebra of
observables consisting of position operators, fourmomentum operators and spin
operators is manifestly Poincar\'e covariant in this framework. Our results
support expectations of other authors (Bell, Eberhard) that a consistent
formulation of quantum mechanics demands existence of a preferred frame.Comment: 21 pages, LaTeX file, no figure
- …