380 research outputs found

    Z+jet production at the LHC: Electroweak radiative corrections

    Get PDF
    The investigation of weak bosons VV (V=W±V=\mathrm{W}^{\pm}, Z\mathrm{Z}) produced with or without associated hard QCD jets will be of great phenomenological interest at the LHC. Owing to the large cross sections and the clean decay signatures of the vector bosons, weak-boson production can be used to monitor and calibrate the luminosity of the collider, to constrain the PDFs, or to calibrate the detector. Moreover, the ZZ+jet(s) final state constitutes an important background to a large variety of signatures of physics beyond the Standard Model. To match the excellent experimental accuracy that is expected at the LHC, we have worked out a theoretical next-to-leading-order analysis of VV+jet production at hadron colliders. The focus of this talk will be on new results on the full electroweak corrections to Z(→l−l+)Z(\to l^-l^+)+jet production at the LHC. All off-shell effects are included in our approach, and the finite lifetime of the ZZ boson is consistently accounted for using the complex-mass scheme. In the following, we briefly introduce the calculation and discuss selected phenomenological implications of our results.Comment: 5 pages, 2 figures, talk at the "35th International Conference on High Energy Physics", Paris, France, July 22 -- 28, 201

    Non-local Higgs actions: Tree-level electroweak constraints and high-energy unitarity

    Full text link
    We consider electroweak symmetry breaking by a certain class of non-local Higgs sectors. Extending previous studies employing the Mandelstam condition, a straight Wilson line is used to make the Higgs action gauge invariant. We show the unitarization of vector-boson scattering for a wide class of non-local actions, but find that the Wilson-line model leads to tree-level corrections to electroweak precision observables, which restrict the parameter space of the model. We also find that Unhiggs models cannot address the hierarchy problem, once the parameters are expressed in terms of low-energy observables.Comment: 22 pages, 6 Figure

    Antisymmetric Wilson loops in N= 4 SYM: from exact results to non-planar corrections

    Get PDF
    Indexación: Scopus.A.C. and A.F. were supported by Fondecyt # 1160282. supported by the I.N.F.N., research initiative STEFI.We consider the vacuum expectation values of 1/2-BPS circular Wilson loops in N= 4 super Yang-Mills theory in the totally antisymmetric representation of the gauge group U(N) or SU(N). Localization and matrix model techniques provide exact, but rather formal, expressions for these expectation values. In this paper we show how to extract the leading and sub-leading behavior in a 1/N expansion with fixed ’t Hooft coupling starting from these exact results. This is done by exploiting the relation between the generating function of antisymmetric Wilson loops and a finite-dimensional quantum system known as the truncated harmonic oscillator. Sum and integral representations for the 1/N terms are provided. © 2018, The Author(s).https://link.springer.com/article/10.1007%2FJHEP08%282018%2914

    Study of the Sawtooth Instability and its Control in the ASDEX Upgrade Tokamak

    Get PDF

    Massive Spinors and dS/CFT Correspondence

    Full text link
    Using the map between free massless spinors on d+1 dimensional Minkowski spacetime and free massive spinors on dSd+1dS_{d+1}, we obtain the boundary term that should be added to the standard Dirac action for spinors in the dS/CFT correspondence. It is shown that this map can be extended only to theories with vertex ({\bar\p}\p)^2 but arbitrary d≥1d\ge1. In the case of scalar field theories such an extension can be made only for d=2,3,5d=2,3,5 with vertices ϕ6\phi^6, ϕ4\phi^4 and ϕ3\phi^3 respectively

    One-loop Effective Action of the Holographic Antisymmetric Wilson Loop

    Full text link
    We systematically study the spectrum of excitations and the one-loop determinant of holographic Wilson loop operators in antisymmetric representations of N=4\mathcal{N}=4 supersymmetric Yang-Mills theory. Holographically, these operators are described by D5-branes carrying electric flux and wrapping an S4⊂S5S^4 \subset S^5 in the AdS5×S5AdS_5\times S^5 bulk background. We derive the dynamics of both bosonic and fermionic excitations for such D5-branes. A particularly important configuration in this class is the D5-brane with AdS2×S4AdS_2\times S^4 worldvolume and kk units of electric flux, which is dual to the circular Wilson loop in the totally antisymmetric representation of rank kk. For this Wilson loop, we obtain the spectrum, show explicitly that it is supersymmetric and calculate the one-loop effective action using heat kernel techniques.Comment: 42 pages, one tabl

    The Polyakov Loop of Anti-symmetric Representations as a Quantum Impurity Model

    Get PDF
    The Polyakov loop of an operator in the anti-symmetric representation in N=4 SYM theory on spacial R^3 is calculated, to leading order in 1/N and at large 't Hooft coupling, by solving the saddle point equations of the corresponding quantum impurity model. Agreement is found with previous results from the supergravity dual, which is given by a D5-brane in an asymptotically AdS_5 x S^5 black brane background. It is shown that the azimuth angle, at which the dual D5-brane wraps the S^5, is related to the spectral asymmetry angle in the spectral density associated with the Green's function of the impurity fermions. Much of the calculation also applies to the Polyakov loop on spacial S^3 or H^3.Comment: 20 pages, 2 figures, v2: references added and small changes in text, v3: extended to Polyakov loops on spacial R^3, S^3 or H^

    Spinor Parallel Propagator and Green's Function in Maximally Symmetric Spaces

    Get PDF
    We introduce the spinor parallel propagator for maximally symmetric spaces in any dimension. Then, the Dirac spinor Green's functions in the maximally symmetric spaces R^n, S^n and H^n are calculated in terms of intrinsic geometric objects. The results are covariant and coordinate-independent.Comment: 7 page

    Design and performance of the ADMX SQUID-based microwave receiver

    Get PDF
    The Axion Dark Matter eXperiment (ADMX) was designed to detect ultra-weakly interacting relic axion particles by searching for their conversion to microwave photons in a resonant cavity positioned in a strong magnetic field. Given the extremely low expected axion-photon conversion power we have designed, built and operated a microwave receiver based on a Superconducting QUantum Interference Device (SQUID). We describe the ADMX receiver in detail as well as the analysis of narrow band microwave signals. We demonstrate the sustained use of a SQUID amplifier operating between 812 and 860 MHz with a noise temperature of 1 K. The receiver has a noise equivalent power of 1.1x10^-24 W/sqrt(Hz) in the band of operation for an integration time of 1.8x10^3 s.Comment: 8 pages, 12 figures, Submitted to Nuclear Inst. and Methods in Physics Research,

    Magnetism in SQUIDs at Millikelvin Temperatures

    Full text link
    We have characterized the temperature dependence of the flux threading dc SQUIDs cooled to millikelvin temperatures. The flux increases as 1/T as temperature is lowered; moreover, the flux change is proportional to the density of trapped vortices. The data is compatible with the thermal polarization of surface spins in the trapped fields of the vortices. In the absence of trapped flux, we observe evidence of spin-glass freezing at low temperature. These results suggest an explanation for the "universal" 1/f flux noise in SQUIDs and superconducting qubits.Comment: 4 pages, 4 figure
    • …
    corecore