99 research outputs found

    Étude de l'effet du compost des déchets ménagers sur l’amélioration du rendement de Maïs et de la Laitue

    Get PDF
    La valorisation agronomique des ordures ménagères par compostage constitue la filière la plus prometteuse par comparaison avec d’autres voies d’élimination comme l’incinération. En effet, les composts  constituent de bons engrais qui permettent une augmentation des récoltes des plantes cultivées, et améliorent les propriétés physicochimiques du sol. Dans cette optique, le présent travail a pour objectif de déterminer la valeur agronomique du compost, issu d’un dispositif de fermentation installé à la faculté des sciences de Kénitra, sur deux cultures maraîchères : maïs et laitue. Le compost mur obtenu après une phase de fermentation aérobique de 6 mois est caractérisé par une humidité comprise entre 30 et 50 %, un pH de 7.8, un rapport C/N égale à 10, et une absence totale des germes indicateurs de contamination fécale : coliformes fécaux et streptocoques fécaux. Les tests agronomiques, montrent que la teneur satisfaisante en éléments nutritifs fait du compost final un amendement organique intéressant. En effet, l’amélioration des rendements des deux cultures : laitue et maïs est proportionnellement liées à la dose du compost. L’incorporation d’une dose de 75 % s’avère satisfaisante pour atteindre le meilleur rendement.Mots-clés : compost, déchets ménagers, valorisation agronomique, cultures maraichères, Kénitra, Maroc

    Impact of super absorbent polymers on early age behavior of ultra-high performance concrete walls

    Get PDF
    Early age cracking, a common problem for Ultra-High Performance Concrete (UHPC), is caused by Autogenous Shrinkage (AS) and self-desiccation arising from the chemical shrinkage during the cement hydration reactions when the deformation is restrained. However, to avoid the crack development initiated by AS, several solutions can be adopted; one example is the addition of a promising material, considered as an internal curing agent, the Super Absorbent Polymers (SAP) which limits the capillary depressions that can enhance the formation of the crack. In this study the main goal is to mitigate the shrinkage using SAPs in infrastructure under severe conditions. Therefore, a demonstrator wall was built simulating a typical case with high risk of cracking. With the help of fiber optic SOFO sensors embedded in the wall, real-time deformations are recorded and compared the demountable mechanical strain gauges (DEMEC) measurements to further investigate the behavior of SAPs in real scale infrastructure. The amount of extra water (in SAP) needed to mitigate shrinkage was determined by performing chemical shrinkage tests on different cement paste combinations. Tests of autogenous shrinkage were performed on mortars using corrugated tubes and showed that SAPs reduce to some extent the AS. Under restrained conditions via ring tests, SAP specimens did not crack. Therefore, SAPs were found promising towards mitigating the shrinkage and enhancing the early age behavior of concrete for a better durability

    Numerical Investigation of the Size Effects on the Creep Damage Coupling

    Get PDF
    AbstractThe service-life of concrete structures depends on the delayed strains that appear due to creep phenomenon. Few are the studies that treated the effect of the dimensions of concrete specimens on the amplitude and the kinetics of creep and the results show many contradictions. Thus, to design reliable civil engineering structures, the knowledge of the behaviour of concrete under a sustained load including size effect is necessary and performing calculations are needed. In this paper, the physical mechanisms behind the size effect on creep rate are evaluated at the mesoscopic scale. The material volume is modeled, by a Digital Concrete model which takes into account the microstructure heterogeneities and the “real” aggregate size of concrete. Calculations are performed in 2D by considering a viscoelastic damage behaviour law for the matrix and an elastic behavior for aggregates. The numerical results show that size effect is well reproduced by the meso-scale approach. The stresses under a sustained load are induced by strain incompatibilities between the components at the mesoscale. Accordingly, the evolution of the microcracked zone with the size of the bending specimens can be related to the creep rate

    Artemisia absinthium L. Aqueous and Ethyl Acetate Extracts: Antioxidant Effect and Potential Activity In Vitro and In Vivo against Pancreatic α-Amylase and Intestinal α-Glucosidase

    Get PDF
    Artemisia absinthium L. is one of the plants which has been used in folk medicine for many diseases over many centuries. This study aims to analyze the chemical composition of the Artemisia absinthium ethyl acetate and its aqueous extracts and to evaluate their effect on the pancreatic α-amylase enzyme and the intestinal α-glucosidase enzyme. In this study, the total contents of phenolic compounds, flavonoids, and condensed tannins in ethyl acetate and the aqueous extracts of Artemisia absinthium leaves were determined by using spectrophotometric techniques, then the antioxidant capacity of these extracts was examined using three methods, namely, the DPPH (2, 2-diphenyl-1picrylhydrazyl) free radical scavenging method, the iron reduction method FRAP, and the β-carotene bleaching method. The determination of the chemical composition of the extracts was carried out using high-performance liquid chromatography—the photodiode array detector (HPLC-DAD). These extracts were also evaluated for their ability to inhibit the activity of the pancreatic α-amylase enzyme, as well as the intestinal α-glucosidase enzyme, in vitro and in vivo, thus causing the reduction of blood glucose. The results of this study showed that high polyphenol and flavonoid contents were obtained in ethyl acetate extract with values of 60.34 ± 0.43 mg GAE/g and 25.842 ± 0.241 mg QE/g, respectively, compared to the aqueous extract. The results indicated that the aqueous extract had a higher condensed tannin content (3.070 ± 0.022 mg EC/g) than the ethyl acetate extract (0.987 ± 0.078 mg EC/g). Ethyl acetate extract showed good DPPH radical scavenging and iron reduction FRAP activity, with an IC50 of 0.167 ± 0.004 mg/mL and 0.923 ± 0.0283 mg/mL, respectively. The β-carotene test indicated that the aqueous and ethyl acetate extracts were able to delay the decoloration of β-carotene with an inhibition of 48.7% and 48.3%, respectively, which may mean that the extracts have antioxidant activity. HPLC analysis revealed the presence of naringenin and caffeic acid as major products in AQE and EAE, respectively. Indeed, this study showed that the aqueous and ethyl acetate extracts significantly inhibited the pancreatic α-amylase and intestinal α-glucosidase, in vitro. To confirm this result, the inhibitory effect of these plant extracts on the enzymes has been evaluated in vivo. Oral intake of the aqueous extract significantly attenuated starch- and sucrose-induced hyperglycemia in normal rats, and evidently, in STZ-diabetic rats as well. The ethyl acetate extract had no inhibitory activity against the intestinal α-glucosidase enzyme in vivo. The antioxidant and the enzyme inhibitory effects may be related to the presence of naringenin and caffeic acid or their synergistic effect with the other compounds in the extracts

    Artemisia absinthium L. Aqueous and Ethyl Acetate Extracts: Antioxidant Effect and Potential Activity In Vitro and In Vivo against Pancreatic α-Amylase and Intestinal α-Glucosidase

    Get PDF
    Artemisia absinthium L. is one of the plants which has been used in folk medicine for many diseases over many centuries. This study aims to analyze the chemical composition of the Artemisia absinthium ethyl acetate and its aqueous extracts and to evaluate their effect on the pancreatic α-amylase enzyme and the intestinal α-glucosidase enzyme. In this study, the total contents of phenolic compounds, flavonoids, and condensed tannins in ethyl acetate and the aqueous extracts of Artemisia absinthium leaves were determined by using spectrophotometric techniques, then the antioxidant capacity of these extracts was examined using three methods, namely, the DPPH (2, 2-diphenyl-1picrylhydrazyl) free radical scavenging method, the iron reduction method FRAP, and the β-carotene bleaching method. The determination of the chemical composition of the extracts was carried out using high-performance liquid chromatography—the photodiode array detector (HPLC-DAD). These extracts were also evaluated for their ability to inhibit the activity of the pancreatic α-amylase enzyme, as well as the intestinal α-glucosidase enzyme, in vitro and in vivo, thus causing the reduction of blood glucose. The results of this study showed that high polyphenol and flavonoid contents were obtained in ethyl acetate extract with values of 60.34 ± 0.43 mg GAE/g and 25.842 ± 0.241 mg QE/g, respectively, compared to the aqueous extract. The results indicated that the aqueous extract had a higher condensed tannin content (3.070 ± 0.022 mg EC/g) than the ethyl acetate extract (0.987 ± 0.078 mg EC/g). Ethyl acetate extract showed good DPPH radical scavenging and iron reduction FRAP activity, with an IC50 of 0.167 ± 0.004 mg/mL and 0.923 ± 0.0283 mg/mL, respectively. The β-carotene test indicated that the aqueous and ethyl acetate extracts were able to delay the decoloration of β-carotene with an inhibition of 48.7% and 48.3%, respectively, which may mean that the extracts have antioxidant activity. HPLC analysis revealed the presence of naringenin and caffeic acid as major products in AQE and EAE, respectively. Indeed, this study showed that the aqueous and ethyl acetate extracts significantly inhibited the pancreatic α-amylase and intestinal α-glucosidase, in vitro. To confirm this result, the inhibitory effect of these plant extracts on the enzymes has been evaluated in vivo. Oral intake of the aqueous extract significantly attenuated starch- and sucrose-induced hyperglycemia in normal rats, and evidently, in STZ-diabetic rats as well. The ethyl acetate extract had no inhibitory activity against the intestinal α-glucosidase enzyme in vivo. The antioxidant and the enzyme inhibitory effects may be related to the presence of naringenin and caffeic acid or their synergistic effect with the other compounds in the extracts

    Pyrrolidine dithiocarbamate administered during ex-vivo lung perfusion promotes rehabilitation of injured donor rat lungs obtained after prolonged warm ischemia.

    Get PDF
    Damaged lung grafts obtained after circulatory death (DCD lungs) and warm ischemia may be at high risk of reperfusion injury after transplantation. Such lungs could be pharmacologically reconditioned using ex-vivo lung perfusion (EVLP). Since acute inflammation related to the activation of nuclear factor kappaB (NF-κB) is instrumental in lung reperfusion injury, we hypothesized that DCD lungs might be treated during EVLP by pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-κB. Rat lungs exposed to 1h warm ischemia and 2 h cold ischemia were subjected to EVLP during 4h, in absence (CTRL group, N = 6) or in presence of PDTC (2.5g/L, PDTC group, N = 6). Static pulmonary compliance (SPC), peak airway pressure (PAWP), pulmonary vascular resistance (PVR), and oxygenation capacity were determined during EVLP. After EVLP, we measured the weight gain of the heart-lung block (edema), and the concentration of LDH (cell damage), proteins (permeability edema) and of the cytokines IL-6, TNF-α and CINC-1 in bronchoalveolar lavage (BAL), and we evaluated NF-κB activation by the degree of phosphorylation and degradation of its inhibitor IκBα in lung tissue. In CTRL, we found significant NF-κB activation, lung edema, and a massive release of LDH, proteins and cytokines. SPC significantly decreased, PAWP and PVR increased, while oxygenation tended to decrease. Treatment with PDTC during EVLP inhibited NF-κB activation, did not influence LDH release, but markedly reduced lung edema and protein concentration in BAL, suppressed TNFα and IL-6 release, and abrogated the changes in SPC, PAWP and PVR, with unchanged oxygenation. In conclusion, suppression of innate immune activation during EVLP using the NF-κB inhibitor PDTC promotes significant improvement of damaged rat DCD lungs. Future studies will determine if such rehabilitated lungs are suitable for in vivo transplantation
    corecore