12 research outputs found

    Foliations of Isonergy Surfaces and Singularities of Curves

    Full text link
    It is well known that changes in the Liouville foliations of the isoenergy surfaces of an integrable system imply that the bifurcation set has singularities at the corresponding energy level. We formulate certain genericity assumptions for two degrees of freedom integrable systems and we prove the opposite statement: the essential critical points of the bifurcation set appear only if the Liouville foliations of the isoenergy surfaces change at the corresponding energy levels. Along the proof, we give full classification of the structure of the isoenergy surfaces near the critical set under our genericity assumptions and we give their complete list using Fomenko graphs. This may be viewed as a step towards completing the Smale program for relating the energy surfaces foliation structure to singularities of the momentum mappings for non-degenerate integrable two degrees of freedom systems.Comment: 30 pages, 19 figure

    Symmetry breaking perturbations and strange attractors

    Full text link
    The asymmetrically forced, damped Duffing oscillator is introduced as a prototype model for analyzing the homoclinic tangle of symmetric dissipative systems with \textit{symmetry breaking} disturbances. Even a slight fixed asymmetry in the perturbation may cause a substantial change in the asymptotic behavior of the system, e.g. transitions from two sided to one sided strange attractors as the other parameters are varied. Moreover, slight asymmetries may cause substantial asymmetries in the relative size of the basins of attraction of the unforced nearly symmetric attracting regions. These changes seems to be associated with homoclinic bifurcations. Numerical evidence indicates that \textit{strange attractors} appear near curves corresponding to specific secondary homoclinic bifurcations. These curves are found using analytical perturbational tools

    Spatio-temporal waves and targeted Vaccination in recurrent epidemic network models

    No full text
    The success of an infectious disease to invade a population is strongly controlled by the population's specific connectivity structure. Here, a network model is presented as an aid in understanding the role of social behaviour and heterogeneous connectivity in determining the spatio-temporal patterns of disease dynamics. We explore the controversial origins of longterm recurrent oscillations believed to be characteristic of diseases that have a period of temporary immunity after infection. In particular, we focus on sexually transmitted diseases such as syphilis, where this controversy is currently under review. Although temporary immunity plays a key role, it is found that, in realistic small-world networks, the social and sexual behaviour of individuals also has a great influence in generating long-term cycles. The model generates circular waves of infection with unusual spatial dynamics that depend on focal areas that act as pacemakers in the population. Eradication of the disease can be efficiently achieved by eliminating the pacemakers with a targeted vaccination scheme. A simple difference equation model is derived, which captures the infection dynamics of the network model and gives insights into their origins and their eradication through vaccination. Illustrative videos may be found in the electronic supplementary material

    Exploiting Temporal Network Structures of Human Interaction to Effectively Immunize Populations

    Get PDF
    Decreasing the number of people who must be vaccinated to immunize a community against an infectious disease could both save resources and decrease outbreak sizes. A key to reaching such a lower threshold of immunization is to find and vaccinate people who, through their behavior, are more likely than average to become infected and to spread the disease further. Fortunately, the very behavior that makes these people important to vaccinate can help us to localize them. Earlier studies have shown that one can use previous contacts to find people that are central in static contact networks. However, real contact patterns are not static. In this paper, we investigate if there is additional information in the temporal contact structure for vaccination protocols to exploit. We answer this affirmative by proposing two immunization methods that exploit temporal correlations and showing that these methods outperform a benchmark static-network protocol in four empirical contact datasets under various epidemic scenarios. Both methods rely only on obtainable, local information, and can be implemented in practice. For the datasets directly related to contact patterns of potential disease spreading (of sexually-transmitted and nosocomial infections respectively), the most efficient protocol is to sample people at random and vaccinate their latest contacts. The network datasets are temporal, which enables us to make more realistic evaluations than earlier studies—we use only information about the past for the purpose of vaccination, and about the future to simulate disease outbreaks. Using analytically tractable models, we identify two temporal structures that explain how the protocols earn their efficiency in the empirical data. This paper is a first step towards real vaccination protocols that exploit temporal-network structure—future work is needed both to characterize the structure of real contact sequences and to devise immunization methods that exploit these
    corecore