57 research outputs found

    Expression analysis of the BFN1 nuclease gene promoter during senescence, abscission, and programmed cell death-related processes

    Get PDF
    Little is known about the biological role of nucleases induced during plant senescence and programmed cell death (PCD). Arabidopsis BFN1 has been identified as a senescence-associated type I nuclease, whose protein sequence shares high homology with some other senescence- or PCD-associated plant nucleases. To learn about BFN1 regulation, its expression pattern was analysed. A 2.3ā€‰kb portion of the 5ā€² promoter sequence of BFN1 was cloned and its ability to activate the GUS reporter gene was examined. Transgenic Arabidopsis and tomato plants harbouring this chimeric construct were analysed for GUS expression. In both, the BFN1 promoter was able specifically to direct GUS expression in senescent leaves, differentiating xylem and the abscission zone of flowers. Thus, at least part of the regulation of BFN1 is mediated at the transcriptional level, and the regulatory elements are recognized in the two different plants. In tomato, specific expression was observed in the leaf and the fruit abscission zones. The BFN1 promoter was also active in other tissues, including developing anthers and seeds, and in floral organs after fertilization. PCD has been implicated in all of these processes, suggesting that in addition to senescence, BFN1 is involved in PCD associated with different development processes in Arabidopsis

    NAC transcription factor ORE1 and senescence-induced BIFUNCTIONAL NUCLEASE1 (BFN1) constitute a regulatory cascade in Arabidopsis

    No full text
    Senescence is a highly regulated process that involves the action of a large number of transcription factors. The NAC transcription factor ORE1 (ANAC092) has recently been shown to play a critical role in positively controlling senescence in Arabidopsis thaliana, however, no direct target gene through which it exerts its molecular function has been identified previously. Here, we report that BIFUNCTIONAL NUCLEASE1 (BFN1), a well-known senescence-enhanced gene, is directly regulated by ORE1. We detected elevated expression of BFN1 already 2 hours after induction of ORE1 in estradiol-inducible ORE1 overexpression lines and 6 hours after transfection of Arabidopsis mesophyll cell protoplasts with a 35S:ORE1 construct. ORE1 and BFN1 expression patterns largely overlap, as shown by promoter - reporter gene (GUS) fusions, while BFN1 expression in senescent leaves and the abscission zones of maturing flower organs was virtually absent in ore1 mutant background. In vitro binding site assays revealed a bipartite ORE1 binding site, similar to the one of ORS1, a paralog of ORE1. A bipartite ORE1 binding site was identified in the BFN1 promoter; mutating the cis element within the context of the full-length BFN1 promoter drastically reduced ORE1-mediated transactivation capacity in transiently transfected Arabidopsis mesophyll cell protoplasts. Furthermore, chromatin-immunoprecipitation (ChIP) demonstrates in vivo binding of ORE1 to the BFN1 promoter. We also demonstrate binding of ORE1 in vivo to the promoters of two other senescence-associated genes, i.e. SAG29/SWEET15 and SINA1, supporting the central role of ORE1 during senescence

    Hypothesis for the evolution of three-helix Chl a/b and Chl a/c light-harvesting antenna proteins from two-helix and four-helix ancestors

    Full text link
    The nuclear-encoded Chl a/b and Chl a/c antenna proteins of photosynthetic eukaryotes are part of an extended family of proteins that also includes the early light-induced proteins (ELIPs) and the 22 kDa intrinsic protein of PS II (encoded by psb S gene). All members of this family have three transmembrane helices except for the psb S protein, which has four. The amino acid sequences of these proteins are compared and related to the three-dimensional structure of pea LHC II Type I (KĆ¼hlbrandt and Wang, Nature 350: 130ā€“134, 1991). The similarity of psb S to the three-helix members of the family suggests that the latter arose from a four-helix ancestor that lost its C-terminal helix by deletion. Strong internal similarity between the two halves of the psb S protein suggests that it in turn arose as the result of the duplication of a gene encoding a two-helix protein. Since psb S is reported to be present in at least one cyanobacterium, the ancestral four-helix protein may have been present prior to the endosymbiotic event or events that gave rise to the photosynthetic eukaryotes. The Chl a/b and Chl a/c antenna proteins, and the immunologically-related proteins in the rhodophytes may have had a common ancestor which was present in the early photosynthetic eukaryotes, and predated their division into rhodophyte, chromophyte and chlorophyte lineages. The LHC I-LHC II divergence probably occurred before the separation of higher plants from chlorophyte algae and euglenophytes, and the different Types of LHC I and LHC II proteins arose prior to the separation of angiosperms and gymnosperms.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43538/1/11120_2004_Article_BF00029382.pd

    Vacuolar processing enzyme activates programmed cell death in the apical meristem inducing loss of apical dominance

    No full text
    The potato (Solanum tuberosum L.) tuber is a swollen underground stem that can sprout in an apical dominance (AD) pattern. Bromoethane (BE) induces loss of AD and the accumulation of vegetative vacuolar processing enzyme (S.Ā tuberosum vacuolar processing enzyme [StVPE]) in the tuber apical meristem (TAM). Vacuolar processing enzyme activity, induced by BE, is followed by programmed cell death in the TAM. In this study, we found that the mature StVPE1 (mVPE) protein exhibits specific activity for caspase 1, but not caspase 3 substrates. Optimal activity of mVPE was achieved at acidic pH, consistent with localization of StVPE1 to the vacuole, at the edge of the TAM. Downregulation of StVPE1 by RNA interference resulted in reduced stem branching and retained AD in tubers treated with BE. Overexpression of StVPE1 fused to green fluorescent protein showed enhanced stem branching after BE treatment. Our data suggest that, following stress, induction of StVPE1 in the TAM induces AD loss and stem branching
    • ā€¦
    corecore