35 research outputs found

    Future feed control – Tracing banned bovine material in insect meal

    Get PDF
    In the present study, we assessed if different legacy and novel molecular analyses approaches can detect and trace prohibited bovine material in insects reared to produce processed animal protein (PAP). Newly hatched black soldier fly (BSF) larvae were fed one of the four diets for seven days; a control feeding medium (Ctl), control feed spiked with bovine hemoglobin powder (BvHb) at 1% (wet weight, w/w) (BvHb 1%, w/w), 5% (BvHb 5%, w/w) and 10% (BvHb 10%, w/w). Another dietary group of BSF larvae, namely *BvHb 10%, was first grown on BvHb 10% (w/w), and after seven days separated from the residual material and placed in another container with control diet for seven additional days. Presence of ruminant material in insect feed and in BSF larvae was assessed in five different laboratories using (i) real time-PCR analysis, (ii) multi-target ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS), (iii) protein-centric immunoaffinity-LC-MS/MS, (iv) peptide-centric immunoaffinity-LC-MS/MS, (v) tandem mass spectral library matching (SLM), and (vi) compound specific amino acid analysis (CSIA). All methods investigated detected ruminant DNA or BvHb in specific insect feed media and in BSF larvae, respectively. However, each method assessed, displayed distinct shortcomings, which precluded detection of prohibited material versus non-prohibited ruminant material in some instances. Taken together, these findings indicate that detection of prohibited material in the insect-PAP feed chain requires a tiered combined use of complementary molecular analysis approaches. We therefore advocate the use of a combined multi-tier molecular analysis suite for the detection, differentiation and tracing of prohibited material in insect-PAP based feed chains and endorse ongoing efforts to extend the currently available battery of PAP detection approaches with MS based techniques and possibly δ13CAA fingerprinting.</p

    Future feed control – Tracing banned bovine material in insect meal

    Get PDF
    In the present study, we assessed if different legacy and novel molecular analyses approaches can detect and trace prohibited bovine material in insects reared to produce processed animal protein (PAP). Newly hatched black soldier fly (BSF) larvae were fed one of the four diets for seven days; a control feeding medium (Ctl), control feed spiked with bovine hemoglobin powder (BvHb) at 1% (wet weight, w/w) (BvHb 1%, w/w), 5% (BvHb 5%, w/w) and 10% (BvHb 10%, w/w). Another dietary group of BSF larvae, namely *BvHb 10%, was first grown on BvHb 10% (w/w), and after seven days separated from the residual material and placed in another container with control diet for seven additional days. Presence of ruminant material in insect feed and in BSF larvae was assessed in five different laboratories using (i) real time-PCR analysis, (ii) multi-target ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS), (iii) protein-centric immunoaffinity-LC-MS/MS, (iv) peptide-centric immunoaffinity-LC-MS/MS, (v) tandem mass spectral library matching (SLM), and (vi) compound specific amino acid analysis (CSIA). All methods investigated detected ruminant DNA or BvHb in specific insect feed media and in BSF larvae, respectively. However, each method assessed, displayed distinct shortcomings, which precluded detection of prohibited material versus non-prohibited ruminant material in some instances. Taken together, these findings indicate that detection of prohibited material in the insect-PAP feed chain requires a tiered combined use of complementary molecular analysis approaches. We therefore advocate the use of a combined multi-tier molecular analysis suite for the detection, differentiation and tracing of prohibited material in insect-PAP based feed chains and endorse ongoing efforts to extend the currently available battery of PAP detection approaches with MS based techniques and possibly δ13CAA fingerprinting.publishedVersio

    Overexpression of DNA Polymerase Zeta Reduces the Mitochondrial Mutability Caused by Pathological Mutations in DNA Polymerase Gamma in Yeast

    Get PDF
    In yeast, DNA polymerase zeta (Rev3 and Rev7) and Rev1, involved in the error-prone translesion synthesis during replication of nuclear DNA, localize also in mitochondria. We show that overexpression of Rev3 reduced the mtDNA extended mutability caused by a subclass of pathological mutations in Mip1, the yeast mitochondrial DNA polymerase orthologous to human Pol gamma. This beneficial effect was synergistic with the effect achieved by increasing the dNTPs pools. Since overexpression of Rev3 is detrimental for nuclear DNA mutability, we constructed a mutant Rev3 isoform unable to migrate into the nucleus: its overexpression reduced mtDNA mutability without increasing the nuclear one

    UHPLC-MS/MS method for sensitive, specific and simultaneous detection of bovine blood meal, blood products and milk products in compound feed

    Full text link
    peer reviewedFeed availability is one of the biggest challenges for the future. Solutions will be found by increasing the production efficiency and finding new sources without jeopardizing feed quality and safety. Animal by-products are an interesting source of feed materials. These materials are rich in proteins of high nutritional value and have an economic interest since their non-use results to a logical loss of gains. However, since the mad cow disease crisis, their use has been strictly regulated. In 2013, non-ruminant processed animal proteins (PAPs) were reauthorised in aquafeed but ruminant PAPs remain forbidden. Official controls are based on a combination of light microscopy and PCR. But sometimes these methods are unable to distinguish some feed materials. The objective of this work was to develop a sensitive method using ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) for the specific detection of bovine blood-derived products and milk powder in feed. This method has the advantage to be species and tissue specific. Peptide biomarkers identified in previous studies were used. The sample preparation and the analytical method were designed to provide a fast, simple and powerful method suitable for routine. Proteins were extracted in a buffer containing 200 mM TRIS-HCl pH 9.2, 2 M urea followed by trypsin digestion and purification with tC18 SPE (Waters). Analyses were performed by liquid chromatography (Acquity UHPLC system, Waters) coupled with a triple quadrupole mass spectrometer (Xevo TQS, Waters). Labelled peptides were used as internal standard in order to compare the results independently of the retention time variation due to matrix effect. Various commercial aquafeed batches artificially adulterated at levels of 0.1 % to 1 % (w/w) with bovine blood meal, bovine blood products or milk powder were analysed in order to assess the influence of matrix and to evaluate sensitivity and specificity of the method. The method was able to detect all adulterants at 0.1 % level in all matrices. This makes the method suitable for application in feed control and offers an innovative and complementary solution for the simultaneously identification of authorised and unauthorised animal by-products such as PAPs

    Analysis of the trinucleotide CAG repeat from the human mitochondrial DNA polymerase gene in healthy and diseased individuals

    No full text
    The human nuclear gene (POLG) for the catalytic subunit of mitochondrial DNA polymerase (DNA polymerase \u3b3) contains a trinucleotide CAG microsatellite repeat within the coding sequence. We have investigated the frequency of different repeat-length alleles in populations of diseased and healthy individuals. The predominant allele of 10 CAG repeats was found at a very similar frequency (approximately 88%) in both Finnish and ethnically mixed population samples, with homozygosity close to the equilibrium prediction. Other alleles of between 5 and 13 repeat units were detected, but no larger, expanded alleles were found. A series of 51 British myotonic dystrophy patients showed no significant variation from controls, indicating an absence of generalised CAG repeat instability. Patients with a variety of molecular lesions in mtDNA, including sporadic, clonal deletions, maternally inherited point mutations, autosomally transmitted mtDNA depletion and autosomal dominant multiple deletions showed no differences in POLG trinucleotide repeat-length distribution from controls. These findings rule out POLG repeat expansion as a common pathogenic mechanism in disorders characterised by mitochondrial genome instability
    corecore