518 research outputs found

    RR Lyrae stars in four globular clusters in the Fornax dwarf galaxy

    Full text link
    (Abridged) We have surveyed four globular clusters in the Fornax dwarf galaxy for RR Lyrae stars, using archival HST observations. We identify 197 new RR Lyrae stars in these four clusters. Despite the short observational baseline, we derive periods, light-curves, and photometric parameters for each. The Fornax clusters have exceptionally large RR Lyrae specific frequencies compared with the Galactic globular clusters. Furthermore, the Fornax cluster RR Lyrae stars are unusual in that their characteristics are intermediate between the two Galactic Oosterhoff groups. In this respect the Fornax clusters are similar to the field populations in several dwarf galaxies. We revise previous measurements of the HB morphology in each cluster. The Fornax clusters closely resemble the ``young'' Galactic halo population defined by Zinn. The existence of the second parameter effect among the Fornax clusters is also confirmed. Finally, we determine foreground reddening and distance estimates for each cluster. We find a mean distance modulus to Fornax of (m-M)_0 = 20.66 +/- 0.03 (random) +/- 0.15 (systematic). Our measurements are consistent with a line of sight depth of 8-10 kpc for this galaxy, matching its projected dimensions, and incompatible with tidal model explanations for the observed high velocity dispersions in many dSph galaxies. Dark matter dominance is suggested.Comment: 26 pages, 6 figures. Accepted for publication in MNRAS. Table 2 and Figure 2 will only be available in the electronic version. On-line data will soon be available at http://www.ast.cam.ac.uk/STELLARPOPS/Fornax_RRlyr

    The Variable Stars and Blue Horizontal Branch of the Metal-Rich Globular Cluster NGC 6441

    Get PDF
    We present time-series VI photometry of the metal-rich ([Fe/H] = -0.53) globular cluster NGC 6441. Our color-magnitude diagram shows that the extended blue horizontal branch seen in Hubble Space Telescope data exists in the outermost reaches of the cluster. The red clump slopes nearly parallel to the reddening vector. A component of this slope is due to differential reddening, but part is intrinsic. The blue horizontal branch stars are more centrally concentrated than the red clump stars. We have discovered about 50 new variable stars near NGC 6441, among them eight or more RR Lyrae stars which are very probably cluster members. Comprehensive period searches over the range 0.2-1.0 days yielded unusually long periods (0.5-0.9 days) for the fundamental pulsators compared with field RR Lyrae of the same metallicity. Three similar long-period RR Lyrae are known in other metal-rich globulars. With over ten examples in hand, it seems that a distinct sub-class of RR Lyrae is emerging. The observed properties of the horizontal branch stars are in reasonable agreement with recent models which invoke deep mixing to enhance the atmospheric helium abundance, while they conflict with models which assume high initial helium abundance. The light curves of the c-type RR Lyrae seem to have unusually long rise times and sharp minima. Reproducing these light curves in stellar pulsation models may provide another means of constraining the physical variables responsible for the anomalous blue horizontal branch extension and sloped red clump observed in NGC 6441.Comment: 30 pages plus 6 EPS and 6 JPEG figures; uses AAS TeX. Accepted by the Astronomical Journal. Minor changes include computing He abundance, modifications to Figs 1 and 8, and expansion on idea that blue HB stars may be produced in binarie

    The Massad Commission Report to the Tribal Council of the Cherokee Nation

    Get PDF

    Notes

    Get PDF

    The equilibrium condition in gravitational collapse and its application to a cosmological scenario

    Full text link
    We discuss the equilibrium conditions of the gravitational collapse of a spherically symmetric matter cloud. We analyze the spinor structure of a general collapsing space-time and redefine the equilibrium conditions by using Cartan scalars. We qualitatively investigate the equilibrium configuration of a two-fluid system consisting of a dust-like fluid and a fluid with a negative equation of state. We use our results to investigate certain cosmological scenarios where dark energy can cluster inside the over-dense regions of dark matter and together reaches a stable configuration. We compare the outcomes of our work with existing work where the virialization technique is used to stabilize the two-fluid system.Comment: 20 pages, 7 figure

    Systematics of RR Lyrae Statistical Parallax III: Apparent Magnitudes and Extinctions

    Get PDF
    We sing the praises of the central limit theorem. Having previously removed all other possible causes of significant systematic error in the statistical parallax determination of RR Lyrae absolute magnitudes, we investigate systematic errors from two final sources of input data: apparent magnitudes and extinctions. We find corrections due to each of ~0.05 mag, i.e., ~1/2 the statistical error. However, these are of opposite sign and so roughly cancel. The apparent magnitude system that we previously adopted from Layden et al. was calibrated to the photometry of Clube & Dawe. Using Hipparcos photometry we show that the Clube & Dawe system is ~0.06 mag too bright. Extinctions were previously pinned to the HI-based map of Burstein & Heiles. We argue that A_V should rather be based on new COBE/IRAS dust-emission map of Schlegel, Finkbeiner & Davis. This change increases the mean A_V by ~0.05 mag. We find M_V=0.77 +/- 0.13 at [Fe/H]=-1.60 for a pure sample of 147 halo RR Lyraes, or M_V=0.80 +/- 0.11 at [Fe/H]=-1.71 if we incorporate kinematic information from 716 non-kinematically selected non-RR Lyrae stars from Beers & Sommer-Larsen. These are 2 and 3 sigma fainter than recent determinations of M_V from main sequence fitting of clusters using Hipparcos measurements of subdwarfs by Reid and Gratton et al. Since statistical parallax is being cleared of systematic errors and since the chance of a >2 sigma statistical fluctuation is <1/20, we conclude that these brighter determinations may be in error. In the course of three papers, we have corrected 6 systematic errors whose absolute values total 0.20 mag. Had these, contrary to the expectation of the central limit theorem, all lined up one way, they could have resolved the conflict in favor of the brighter determinations. In fact, the net change was only 0.06 mag.Comment: submitted to ApJ, 21 pages, 2 tables, 4 figure
    corecore