478 research outputs found
beta-Cu2V2O7: a spin-1/2 honeycomb lattice system
We report on band structure calculations and a microscopic model of the
low-dimensional magnet beta-Cu2V2O7. Magnetic properties of this compound can
be described by a spin-1/2 anisotropic honeycomb lattice model with the
averaged coupling \bar J1=60-66 K. The low symmetry of the crystal structure
leads to two inequivalent couplings J1 and J1', but this weak spatial
anisotropy does not affect the essential physics of the honeycomb spin lattice.
The structural realization of the honeycomb lattice is highly non-trivial: the
leading interactions J1 and J1' run via double bridges of VO4 tetrahedra
between spatially separated Cu atoms, while the interactions between structural
nearest neighbors are negligible. The non-negligible inter-plane coupling
Jperp~15 K gives rise to the long-range magnetic ordering at TN~26 K. Our model
simulations improve the fit of the magnetic susceptibility data, compared to
the previously assumed spin-chain models. Additionally, the simulated ordering
temperature of 27 K is in remarkable agreement with the experiment. Our study
evaluates beta-Cu2V2O7 as the best available experimental realization of the
spin-1/2 Heisenberg model on the honeycomb lattice. We also provide an
instructive comparison of different band structure codes and computational
approaches to the evaluation of exchange couplings in magnetic insulators.Comment: 11 pages, 10 figures, 2 tables: revised version, extended description
of simulation result
Conserved Charges in the Principal Chiral Model on a Supergroup
The classical principal chiral model in 1+1 dimensions with target space a
compact Lie supergroup is investigated. It is shown how to construct a local
conserved charge given an invariant tensor of the Lie superalgebra. We
calculate the super-Poisson brackets of these currents and argue that they are
finitely generated. We show how to derive an infinite number of local charges
in involution. We demonstrate that these charges Poisson commute with the
non-local charges of the model
Silencing of the Violaxanthin De-Epoxidase Gene in the Diatom Phaeodactylum tricornutum Reduces Diatoxanthin Synthesis and Non-Photochemical Quenching
Diatoms are a major group of primary producers ubiquitous in all aquatic ecosystems. To protect themselves from photooxidative damage in a fluctuating light climate potentially punctuated with regular excess light exposures, diatoms have developed several photoprotective mechanisms. The xanthophyll cycle (XC) dependent non-photochemical chlorophyll fluorescence quenching (NPQ) is one of the most important photoprotective processes that rapidly regulate photosynthesis in diatoms. NPQ depends on the conversion of diadinoxanthin (DD) into diatoxanthin (DT) by the violaxanthin de-epoxidase (VDE), also called DD de-epoxidase (DDE). To study the role of DDE in controlling NPQ, we generated transformants of P. tricornutum in which the gene (Vde/Dde) encoding for DDE was silenced. RNA interference was induced by genetic transformation of the cells with plasmids containing either short (198 bp) or long (523 bp) antisense (AS) fragments or, alternatively, with a plasmid mediating the expression of a self-complementary hairpin-like construct (inverted repeat, IR). The silencing approaches generated diatom transformants with a phenotype clearly distinguishable from wildtype (WT) cells, i.e. a lower degree as well as slower kinetics of both DD de-epoxidation and NPQ induction. Real-time PCR based quantification of Dde transcripts revealed differences in transcript levels between AS transformants and WT cells but also between AS and IR transformants, suggesting the possible presence of two different gene silencing mediating mechanisms. This was confirmed by the differential effect of the light intensity on the respective silencing efficiency of both types of transformants. The characterization of the transformants strengthened some of the specific features of the XC and NPQ and confirmed the most recent mechanistic model of the DT/NPQ relationship in diatoms
- …