614 research outputs found
Partially gapped fermions in 2D
We compute mean field phase diagrams of two closely related interacting
fermion models in two spatial dimensions (2D). The first is the so-called 2D
t-t'-V model describing spinless fermions on a square lattice with local
hopping and density-density interactions. The second is the so-called 2D
Luttinger model that provides an effective description of the 2D t-t'-V model
and in which parts of the fermion degrees of freedom are treated exactly by
bosonization. In mean field theory, both models have a charge-density-wave
(CDW) instability making them gapped at half-filling. The 2D t-t'-V model has a
significant parameter regime away from half-filling where neither the CDW nor
the normal state are thermodynamically stable. We show that the 2D Luttinger
model allows to obtain more detailed information about this mixed region. In
particular, we find in the 2D Luttinger model a partially gapped phase that, as
we argue, can be described by an exactly solvable model.Comment: v1: 36 pages, 10 figures, v2: minor corrections; equation references
to arXiv:0903.0055 updated
Goldfishing by gauge theory
A new solvable many-body problem of goldfish type is identified and used to
revisit the connection among two different approaches to solvable dynamical
systems. An isochronous variant of this model is identified and investigated.
Alternative versions of these models are presented. The behavior of the
alternative isochronous model near its equilibrium configurations is
investigated, and a remarkable Diophantine result, as well as related
Diophantine conjectures, are thereby obtained.Comment: 22 page
Elementary Derivation of the Chiral Anomaly
An elementary derivation of the chiral gauge anomaly in all even dimensions
is given in terms of noncommutative traces of pseudo-differential operators.Comment: Minor errors and misprints corrected, a reference added. AmsTex file,
12 output pages. If you do not have preloaded AmsTex you have to \input
amstex.te
Anomalies and Schwinger terms in NCG field theory models
We study the quantization of chiral fermions coupled to generalized Dirac
operators arising in NCG Yang-Mills theory. The cocycles describing chiral
symmetry breaking are calculated. In particular, we introduce a generalized
locality principle for the cocycles. Local cocycles are by definition
expressions which can be written as generalized traces of operator commutators.
In the case of pseudodifferential operators, these traces lead in fact to
integrals of ordinary local de Rham forms. As an application of the general
ideas we discuss the case of noncommutative tori. We also develop a gerbe
theoretic approach to the chiral anomaly in hamiltonian quantization of NCG
field theory.Comment: 30 page
Renormalization of Non-Commutative Phi^4_4 Field Theory in x Space
In this paper we provide a new proof that the Grosse-Wulkenhaar
non-commutative scalar Phi^4_4 theory is renormalizable to all orders in
perturbation theory, and extend it to more general models with covariant
derivatives. Our proof relies solely on a multiscale analysis in x space. We
think this proof is simpler and could be more adapted to the future study of
these theories (in particular at the non-perturbative or constructive level).Comment: 32 pages, v2: correction of lemmas 3.1 and 3.2 with no consequence on
the main resul
Polyakov-Loops and Fermionic Zero Modes in QCD2 on the Torus
A simple derivation of the free energy and expectation values of
Polyakov-loops in via path integral methods is given. In the chosen
gauge (which can be generalized to 4 dimensions) without Gribov-copies the
Fadeev-Popov determinant and the integration over the space component of the
gauge field cancel exactly and we are left only with an integration over the
zero components of the gauge field in the Cartan sub-algebra. This way the
Polyakov-loop operators become Vertex-operators in a simple quantum mechanical
model. The number of fermionic zero modes is related to the winding-numbers of
in this gauge.Comment: some comments added and some typos corrected, 17 pages, Latex, 2
figure
Singular factorizations, self-adjoint extensions, and applications to quantum many-body physics
We study self-adjoint operators defined by factorizing second order
differential operators in first order ones. We discuss examples where such
factorizations introduce singular interactions into simple quantum mechanical
models like the harmonic oscillator or the free particle on the circle. The
generalization of these examples to the many-body case yields quantum models of
distinguishable and interacting particles in one dimensions which can be solved
explicitly and by simple means. Our considerations lead us to a simple method
to construct exactly solvable quantum many-body systems of Calogero-Sutherland
type.Comment: 17 pages, LaTe
Explicit solution of the (quantum) elliptic Calogero-Sutherland model
We derive explicit formulas for the eigenfunctions and eigenvalues of the
elliptic Calogero-Sutherland model as infinite series, to all orders and for
arbitrary particle numbers and coupling parameters. The eigenfunctions obtained
provide an elliptic deformation of the Jack polynomials. We prove in certain
special cases that these series have a finite radius of convergence in the nome
of the elliptic functions, including the two particle (= Lam\'e) case for
non-integer coupling parameters.Comment: v1: 17 pages. The solution is given as series in q but only to low
order. v2: 30 pages. Results significantly extended. v3: 35 pages. Paper
completely revised: the results of v1 and v2 are extended to all order
Parametric Representation of Noncommutative Field Theory
In this paper we investigate the Schwinger parametric representation for the
Feynman amplitudes of the recently discovered renormalizable quantum
field theory on the Moyal non commutative space. This
representation involves new {\it hyperbolic} polynomials which are the
non-commutative analogs of the usual "Kirchoff" or "Symanzik" polynomials of
commutative field theory, but contain richer topological information.Comment: 31 pages,10 figure
Two and Three Loops Beta Function of Non Commutative Theory
The simplest non commutative renormalizable field theory, the
model on four dimensional Moyal space with harmonic potential is asymptotically
safe at one loop, as shown by H. Grosse and R. Wulkenhaar. We extend this
result up to three loops. If this remains true at any loop, it should allow a
full non perturbative construction of this model.Comment: 24 pages, 7 figure
- …