327 research outputs found

    Paleoclimatic and paleobiological correlations by mammal faunas from Southern America and SW Europe

    Get PDF
    Proceedings of the 1" R.C.A.N.S. Congress, Lisboa, October 1992The preliminary results of a research dealing with the study of global changes in the last 5 Ma by correlations of continental records between the Northern and the Southern Hemispheres (SW Europe and Argentina, respectively) are reported. The first analyses of the evolutionary patterns point out, in Argentina, two different turnover times: the first one is characterized by a high percentage of mammalautochthonous extinctions placed in the span of time between the last Chapadmalalan and the first Ensenadan faunas, around 2.5-2.3 Ma. It is possible to identify a high percentage of new immigrant genera from North America in the first turnover, while the second one, associated to the "last Pleistocene megafaunal extinctions", probably occurred at the beginning of the "Glacial Pleistocene", around 1.0-0.8 Ma. The oxygen isotope composition of phosphate from fossil mammal bones was measured to have a better climatic resolution from faunal elements of two hemispheres and to compare them by results as quantitative as possible. The preliminary efforts are brought out on fourteen deposits from SE Spain. Isotopic and chemical results strongly suggest the existence of a relation between the oxygen isotope composition in various skeletal components and the taphonomic processes of a single deposit. The variations of 0180 in the mammal teeth of Equidae from SE Spain suggest a shift towards a colder environment from the older one, Huelago, to more recent deposits, as well as from Venta Micena to Fuensanta in agreement with the transition from the Middle to the Upper Villafranchian, around 2.5 Ma, and the transition between the "Preglacial" to the "Glacial" Pleistocene, around 1.9-0.8 Ma

    Kimmeridgian-Tithonian sea-level fluctuations in the Uljanovsk-Saratov Basin (Russian Platform)

    Get PDF
    Abstract The Uljanovsk-Saratov Basin, located in the southeast of the Russian Platform, presents an intriguing record of the Kimmeridgian-Tithonian sea-level fluctuations. In the Late Jurassic, this basin was a trough within the Interior Russian Sea. The data available from both outcrops and boreholes have permitted outlining a number of lithostratigraphic units and regional hiatuses in the northeastern segment of the Uljanovsk-Saratov Basin, thus permitting a precise reconstruction of transgressions/regressions and deepenings/shallowings. In total, three transgressive-regressive cycles and two deepening pulses have been established. These regionally documented changes were both related in part to global eustatic changes, and they also corresponded in part to the regional sea-level changes in some basins of Western Europe and Northern Africa, but not to those of the Arabian Platform. Differences observed between the global and regional curves as well as rapid Tithonian sea-level oscillations are explained by the influences of tectonic activity. It is hypothesized that the regional Tithonian oxygen depletion might have been a consequence from the rapid flooding of a densely vegetated land

    Mechanisms of earthquake induced chemical and fluid transport to carbonate groundwater springs after earthquakes

    Get PDF
    Mechanisms by which hydrochemical changes occur after earthquakes are not well documented. We use the 2016-2017 central Italy seismic sequence, which caused notable hydrochemical transient variations in groundwater springs to address this topic, with special reference to effects on fractured carbonate aquifers. Hydrochemistry measured before and after the earthquakes at four springs at varying distances from the epicenters all showed immediate post-mainshock peaks in trace element concentrations, but little change in major elements. Most parameters returned to pre-earthquake values before the last events of the seismic sequence. The source of solutes, particularly trace elements, is longer residence time pore water stored in slow moving fractures or abandoned karstic flowpaths. These fluids were expelled into the main flow paths after an increase in pore pressure, hydraulic conductivity, and shaking from co-seismic aquifer stress. The weak response to the later earthquakes is explained by progressive depletion of high solute fluids as earlier shocks flushed out the stored fluids in the fractures. Spring \u3b413CDIC values closest to a deep magma source to the west became enriched relative to pre-earthquake values following the August 24th event. This enrichment indicates input from deeply-sourced dissolved CO2 gas after dilation of specific fault conduits. Differences in carbon isotopic responses between springs are attributed to proximity to the deep CO2 source. Most of the transient chemical changes seen in the three fractured carbonate aquifers are attributed to local shaking and emptying of isolated pores and fractures, and are not from rapid upward movement of deep fluids

    Aberrant Water Homeostasis Detected by Stable Isotope Analysis

    Get PDF
    While isotopes are frequently used as tracers in investigations of disease physiology (i.e., 14C labeled glucose), few studies have examined the impact that disease, and disease-related alterations in metabolism, may have on stable isotope ratios at natural abundance levels. The isotopic composition of body water is heavily influenced by water metabolism and dietary patterns and may provide a platform for disease detection. By utilizing a model of streptozotocin (STZ)-induced diabetes as an index case of aberrant water homeostasis, we demonstrate that untreated diabetes mellitus results in distinct combinations, or signatures, of the hydrogen (δ2H) and oxygen (δ18O) isotope ratios in body water. Additionally, we show that the δ2H and δ18O values of body water are correlated with increased water flux, suggesting altered blood osmolality, due to hyperglycemia, as the mechanism behind this correlation. Further, we present a mathematical model describing the impact of water flux on the isotopic composition of body water and compare model predicted values with actual values. These data highlight the importance of factors such as water flux and energy expenditure on predictive models of body water and additionally provide a framework for using naturally occurring stable isotope ratios to monitor diseases that impact water homeostasis

    Tracking Cats: Problems with Placing Feline Carnivores on δ18O, δD Isoscapes

    Get PDF
    Several felids are endangered and threatened by the illegal wildlife trade. Establishing geographic origin of tissues of endangered species is thus crucial for wildlife crime investigations and effective conservation strategies. As shown in other species, stable isotope analysis of hydrogen and oxygen in hair (δD(h), δ(18)O(h)) can be used as a tool for provenance determination. However, reliably predicting the spatial distribution of δD(h) and δ(18)O(h) requires confirmation from animal tissues of known origin and a detailed understanding of the isotopic routing of dietary nutrients into felid hair.We used coupled δD(h) and δ(18)O(h) measurements from the North American bobcat (Lynx rufus) and puma (Puma concolor) with precipitation-based assignment isoscapes to test the feasibility of isotopic geo-location of felidae. Hairs of felid and rabbit museum specimens from 75 sites across the United States and Canada were analyzed. Bobcat and puma lacked a significant correlation between H/O isotopes in hair and local waters, and also exhibited an isotopic decoupling of δ(18)O(h) and δD(h). Conversely, strong δD and δ(18)O coupling was found for key prey, eastern cottontail rabbit (Sylvilagus floridanus; hair) and white-tailed deer (Odocoileus virginianus; collagen, bone phosphate).Puma and bobcat hairs do not adhere to expected pattern of H and O isotopic variation predicted by precipitation isoscapes for North America. Thus, using bulk hair, felids cannot be placed on δ(18)O and δD isoscapes for use in forensic investigations. The effective application of isotopes to trace the provenance of feline carnivores is likely compromised by major controls of their diet, physiology and metabolism on hair δ(18)O and δD related to body water budgets. Controlled feeding experiments, combined with single amino acid isotope analysis of diets and hair, are needed to reveal mechanisms and physiological traits explaining why felid hair does not follow isotopic patterns demonstrated in many other taxa
    • …
    corecore