7,399 research outputs found

    Preservation of equilibrium in orthograde and inverted body positions

    Get PDF
    The mechanism for regulation of the vertical pose with retention of equilibrium in the inverted body position was investigated

    Mixed Quantum/Classical Approach for Description of Molecular Collisions in Astrophysical Environments

    Get PDF
    An efficient and accurate mixed quantum/classical theory approach for computational treatment of inelastic scattering is extended to describe collision of an atom with a general asymmetric-top rotor polyatomic molecule. Quantum mechanics, employed to describe transitions between the internal states of the molecule, and classical mechanics, employed for description of scattering of the atom, are used in a self-consistent manner. Such calculations for rotational excitation of HCOOCH3 in collisions with He produce accurate results at scattering energies above 15 cm–1, although resonances near threshold, below 5 cm–1, cannot be reproduced. Importantly, the method remains computationally affordable at high scattering energies (here up to 1000 cm–1), which enables calculations for larger molecules and at higher collision energies than was possible previously with the standard full-quantum approach. Theoretical prediction of inelastic cross sections for a number of complex organic molecules observed in space becomes feasible using this new computational tool

    Quantum-state extraction from high-Q cavities

    Full text link
    The problem of extraction of a single-mode quantum state from a high-Q cavity is studied for the case in which the time of preparation of the quantum state of the cavity mode is short compared with its decay time. The temporal evolution of the quantum state of the field escaping from the cavity is calculated in terms of phase-space functions. A general condition is derived under which the quantum state of the pulse built up outside the cavity is a nearly perfect copy of the quantum state the cavity field was initially prepared in. The results show that unwanted losses prevent the realization of a nearly perfect extraction of nonclassical quantum states from high-Q optical microcavities with presently available technology.Comment: RevTeX4, 9 pages with 6 figures; extended version as submitted to Phys. Rev.

    Thermodynamics of Yukawa fluids near the one-component-plasma limit

    Full text link
    Thermodynamics of weakly screened (near the one-component-plasma limit) Yukawa fluids in two and three dimensions is analyzed in detail. It is shown that the thermal component of the excess internal energy of these fluids, when expressed in terms of the properly normalized coupling strength, exhibits the scaling pertinent to the corresponding one-component-plasma limit (the scalings differ considerably between the two- and three-dimensional situations). This provides us with a simple and accurate practical tool to estimate thermodynamic properties of weakly screened Yukawa fluids. Particular attention is paid to the two-dimensional fluids, for which several important thermodynamic quantities are calculated to illustrate the application of the approach.Comment: Submitted to Phys. Plasma

    Some exact properties of the gluon propagator

    Full text link
    Recent numerical studies of the gluon propagator in the minimal Landau and Coulomb gauges in space-time dimension 2, 3, and 4 pose a challenge to the Gribov confinement scenario. We prove, without approximation, that for these gauges, the continuum gluon propagator D(k)D(k) in SU(N) gauge theory satisfies the bound d1d1(2π)dddkD(k)k2N{d-1 \over d} {1 \over (2 \pi)^d} \int d^dk {D(k) \over k^2} \leq N. This holds for Landau gauge, in which case dd is the dimension of space-time, and for Coulomb gauge, in which case dd is the dimension of ordinary space and D(k)D(k) is the instantaneous spatial gluon propagator. This bound implies that limk0kd2D(k)=0\lim_{k \to 0}k^{d-2} D(k) = 0, where D(k)D(k) is the gluon propagator at momentum kk, and consequently D(0)=0D(0) = 0 in Landau gauge in space-time d=2d = 2, and in Coulomb gauge in space dimension d=2d = 2, but D(0) may be finite in higher dimension. These results are compatible with numerical studies of the Landau-and Coulomb-gauge propagator. In 4-dimensional space-time a regularization is required, and we also prove an analogous bound on the lattice gluon propagator, 1d(2π)dππddkμcos2(kμ/2)Dμμ(k)4λsin2(kλ/2)N{1 \over d (2 \pi)^d} \int_{- \pi}^{\pi} d^dk {\sum_\mu \cos^2(k_\mu/2) D_{\mu \mu}(k) \over 4 \sum_\lambda \sin^2(k_\lambda/2)} \leq N. Here we have taken the infinite-volume limit of lattice gauge theory at fixed lattice spacing, and the lattice momentum componant kμk_\mu is a continuous angle πkμπ- \pi \leq k_\mu \leq \pi. Unexpectedly, this implies a bound on the {\it high-momentum} behavior of the continuum propagator in minimum Landau and Coulomb gauge in 4 space-time dimensions which, moreover, is compatible with the perturbative renormalization group when the theory is asymptotically free.Comment: 13 page
    corecore