5,225 research outputs found
Twisted Poincar\'e Invariant Quantum Field Theories
It is by now well known that the Poincar\'e group acts on the Moyal plane
with a twisted coproduct. Poincar\'e invariant classical field theories can be
formulated for this twisted coproduct. In this paper we systematically study
such a twisted Poincar\'e action in quantum theories on the Moyal plane. We
develop quantum field theories invariant under the twisted action from the
representations of the Poincar\'e group, ensuring also the invariance of the
S-matrix under the twisted action of the group . A significant new contribution
here is the construction of the Poincar\'e generators using quantum fields.Comment: 17 pages, JHEP styl
Twisted Gauge and Gravity Theories on the Groenewold-Moyal Plane
Recent work [hep-th/0504183,hep-th/0508002] indicates an approach to the
formulation of diffeomorphism invariant quantum field theories (qft's) on the
Groenewold-Moyal (GM) plane. In this approach to the qft's, statistics gets
twisted and the S-matrix in the non-gauge qft's becomes independent of the
noncommutativity parameter theta^{\mu\nu}. Here we show that the noncommutative
algebra has a commutative spacetime algebra as a substructure: the Poincare,
diffeomorphism and gauge groups are based on this algebra in the twisted
approach as is known already from the earlier work of [hep-th/0510059]. It is
natural to base covariant derivatives for gauge and gravity fields as well on
this algebra. Such an approach will in particular introduce no additional gauge
fields as compared to the commutative case and also enable us to treat any
gauge group (and not just U(N)). Then classical gravity and gauge sectors are
the same as those for \theta^{\mu \nu}=0, but their interactions with matter
fields are sensitive to theta^{\mu \nu}. We construct quantum noncommutative
gauge theories (for arbitrary gauge groups) by requiring consistency of twisted
statistics and gauge invariance. In a subsequent paper (whose results are
summarized here), the locality and Lorentz invariance properties of the
S-matrices of these theories will be analyzed, and new non-trivial effects
coming from noncommutativity will be elaborated.
This paper contains further developments of [hep-th/0608138] and a new
formulation based on its approach.Comment: 17 pages, LaTeX, 1 figur
Parameter Inference in the Pulmonary Circulation of Mice
This study focuses on parameter inference in a pulmonary blood cir- culation model for mice. It utilises a fluid dynamics network model that takes selected parameter values and aims to mimic features of the pulmonary haemody- namics under normal physiological and pathological conditions. This is of medical relevance as it allows monitoring of the progression of pulmonary hypertension. Constraint nonlinear optimization is successfully used to learn the parameter values
Verification and Application of Finite Element Model Developed for Flood Routing in Rivers
Flood wave propagation in river channel flow can be enunciated by nonlinear equations of motion for unsteady flow. However, it is difficult to find analytical solution of these complex non-linear equations. Hence, verification of the numerical model should be carried out against field data and numerical predictions. This paper presents the verification of developed finite element model applying for unsteady flow in the open channels. The results of a proposed model indicate a good matching with both Preissmann scheme and HEC-RAS model for a river reach of 29 km at both sites (15 km from upstream and at downstream end) for discharge hydrographs. It also has an agreeable comparison with the Preissemann scheme for the flow depth (stage) hydrographs. The proposed model has also been applying to forecast daily discharges at 400 km downstream from Sukkur barrage, which demonstrates accurate model predictions with observed daily discharges. Hence, this model may be utilized for predicting and issuing flood warnings about flood hazardous in advance
Simulation of TunneLadder Traveling-Wave Tube Input/Output Coupler Characteristics Using MAFIA
RF input/output coupler characteristics for the TunneLadder traveling-wave tube have been calculated using the three-dimensional computer code, MAFIA and compared to experimental data with good agreement. Theory behind coupling of the TunneLadder interaction circuit to input and output waveguides is presented and VSWR data is calculated for variations on principal coupler dimensions to provide insight into manufacturing tolerances necessary for acceptable performance. Accuracy of results using MAFIA demonstrates how experimental hardware testing of three-dimensional coupler designs can be reduced
Size, not temperature, drives cyclopoid copepod predation of invasive mosquito larvae
During range expansion, invasive species can experience new thermal regimes. Differences between the thermal performance of local and invasive species can alter species interactions, including predator-prey interactions. The Asian tiger mosquito, Aedes albopictus, is a known vector of several viral diseases of public health importance. It has successfully invaded many regions across the globe and currently threatens to invade regions of the UK where conditions would support seasonal activity. We assessed the functional response and predation efficiency (percentage of prey consumed) of the cyclopoid copepods Macrocyclops albidus and Megacyclops viridis from South East England, UK against newly-hatched French Ae. albopictus larvae across a relevant temperature range (15, 20, and 25°C). Predator-absent controls were included in all experiments to account for background prey mortality. We found that both M. albidus and M. viridis display type II functional response curves, and that both would therefore be suitable biocontrol agents in the event of an Ae. albopictus invasion in the UK. No significant effect of temperature on the predation interaction was detected by either type of analysis. However, the predation efficiency analysis did show differences due to predator species. The results suggest that M. viridis would be a superior predator against invasive Ae. albopictus larvae due to the larger size of this copepod species, relative to M. albidus. Our work highlights the importance of size relationships in predicting interactions between invading prey and local predators
An evaluation of topical and local anesthesia in phacoemulsification
Objective: To assess the comparative efficacy of topical and local anesthesia in phacoemulsification.MATERIAL AND Methods: The medical records of 186 men and women between the ages of 45-85 years, who underwent elective cataract surgery by phacoemulsification technique, under the care of one surgeon, over a period of one year, from March 1999-March 2000 were reviewed.Results: Of 186 patients who underwent small incision, self-healing phacoemulsification cataract surgery, 124 received topical and 62 local anesthesia. The most common cataract types were nuclear sclerosis. The duration of surgery with topical anesthesia was shorter. Sutures and eye padding were more frequently applied for procedures done under local anesthesia. Uncorrected visual acuity in the first post-op week was between 20/20-20/50 for 53.6% of the cases done under topical compared to 30.9% in local anesthesia. A similar trend was noted in the visual acuity one month post operatively.CONCLUSION: The uncorrected visual acuity improves faster and the duration of surgery is shorter when topical anesthesia is used
Incommensurate antiferromagnetic fluctuations in single-crystalline LiFeAs studied by inelastic neutron scattering
We present an inelastic neutron scattering study on single-crystalline LiFeAs
devoted to the characterization of the incommensurate antiferromagnetic
fluctuations at . Time-of-flight
measurements show the presence of these magnetic fluctuations up to an energy
transfer of 60 meV, while polarized neutrons in combination with longitudinal
polarization analysis on a triple-axis spectrometer prove the pure magnetic
origin of this signal. The normalization of the magnetic scattering to an
absolute scale yields that magnetic fluctuations in LiFeAs are by a factor
eight weaker than the resonance signal in nearly optimally Co-doped
BaFeAs, although a factor two is recovered due to the split peaks owing
to the incommensurability. The longitudinal polarization analysis indicates
weak spin space anisotropy with slightly stronger out-of-plane component
between 6 and 12 meV. Furthermore, our data suggest a fine structure of the
magnetic signal most likely arising from superposing nesting vectors.Comment: 9 pages, 8 figure
- …