3,620 research outputs found

    Remarks on the analytic structure of supersymmetric effective actions

    Full text link
    We study the effective superpotential of N=1 supersymmetric gauge theories with a mass gap, whose analytic properties are encoded in an algebraic curve. We propose that the degree of the curve equals the number of semiclassical branches of the gauge theory. This is true for supersymmetric QCD with one adjoint and polynomial superpotential, where the two sheets of its hyperelliptic curve correspond to the gauge theory pseudoconfining and higgs branches. We verify this proposal in the new case of supersymmetric QCD with two adjoints and superpotential V(X)+XY^2, which is the confining phase deformation of the D_{n+2} SCFT. This theory has three kinds of classical vacua and its curve is cubic. Each of the three sheets of the curve corresponds to one of the three semiclassical branches of the gauge theory. We show that one can continuously interpolate between these branches by varying the couplings along the moduli space.Comment: 49 pages, 3 figures, harvmac; typos correcte

    Super-Group Field Cosmology

    Full text link
    In this paper we construct a model for group field cosmology. The classical equations of motion for the non-interactive part of this model generate the Hamiltonian constraint of loop quantum gravity for a homogeneous isotropic universe filled with a scalar matter field. The interactions represent topology changing processes that occurs due to joining and splitting of universes. These universes in the multiverse are assumed to obey both bosonic and fermionic statistics, and so a supersymmetric multiverse is constructed using superspace formalism. We also introduce gauge symmetry in this model. The supersymmetry and gauge symmetry are introduced at the level of third quantized fields, and not the second quantized ones. This is the first time that supersymmetry has been discussed at the level of third quantized fields.Comment: 14 pages, 0 figures, accepted for publication in Class. Quant. Gra

    Updated resonance photo-decay amplitudes to 2 GeV

    Get PDF
    We present the results of an energy-dependent and set of single-energy partial-wave analyses of single-pion photoproduction data. These analyses extend from threshold to 2 GeV in the laboratory photon energy, and update our previous analyses to 1.8 GeV. Photo-decay amplitudes are extracted for the baryon resonances within this energy range. We consider two photoproduction sum rules and the contributions of two additional resonance candidates found in our most recent analysis of πN\pi N elastic scattering data. Comparisons are made with previous analyses.Comment: Revtex, 26 pages, 3 figures. Postscript figures available from ftp://clsaid.phys.vt.edu/pub/pr or indirectly from http://clsaid.phys.vt.edu/~CAPS

    Quiver Gauge Theory and Extended Electric-magnetic Duality

    Full text link
    We construct N=1 A-D-E quiver gauge theory with the gauge kinetic term which depends on the adjoint chiral superfields, as a low energy effective theory on D5-branes wrapped on 2-cycles of Calabi-Yau 3-fold in IIB string theory. The field-dependent gauge kinetic term can be engineered by introducing B-field which holomorphically varies on the base space (complex plane) of Calabi-Yau. We consider Weyl reflection on A-D-E node, which acts non-trivially on the gauge kinetic term. It is known that Weyl reflection is related to N=1 electric-magnetic duality. Therefore, the non-trivial action implies an extension of the electric-magnetic duality to the case with the field-dependent gauge kinetic term. We show that this extended duality is consistent from the field theoretical point of view. We also consider the duality map of the operators.Comment: 24 pages; v2: references added, typos correcte

    Spatial and Wavenumber Resolution of Doppler Reflectometry

    Full text link
    Doppler reflectometry spatial and wavenumber resolution is analyzed within the framework of the linear Born approximation in slab plasma model. Explicit expression for its signal backscattering spectrum is obtained in terms of wavenumber and frequency spectra of turbulence which is assumed to be radially statistically inhomogeneous. Scattering efficiency for both back and forward scattering (in radial direction) is introduced and shown to be inverse proportional to the square of radial wavenumber of the probing wave at the fluctuation location thus making the spatial resolution of diagnostics sensitive to density profile. It is shown that in case of forward scattering additional localization can be provided by the antenna diagram. It is demonstrated that in case of backscattering the spatial resolution can be better if the turbulence spectrum at high radial wavenumbers is suppressed. The improvement of Doppler reflectometry data localization by probing beam focusing onto the cut-off is proposed and described. The possibility of Doppler reflectometry data interpretation based on the obtained expressions is shown.Comment: http://stacks.iop.org/0741-3335/46/114

    Vanishing Viscosity Limits and Boundary Layers for Circularly Symmetric 2D Flows

    Full text link
    We continue the work of Lopes Filho, Mazzucato and Nussenzveig Lopes [LMN], on the vanishing viscosity limit of circularly symmetric viscous flow in a disk with rotating boundary, shown there to converge to the inviscid limit in L2L^2-norm as long as the prescribed angular velocity α(t)\alpha(t) of the boundary has bounded total variation. Here we establish convergence in stronger L2L^2 and LpL^p-Sobolev spaces, allow for more singular angular velocities α\alpha, and address the issue of analyzing the behavior of the boundary layer. This includes an analysis of concentration of vorticity in the vanishing viscosity limit. We also consider such flows on an annulus, whose two boundary components rotate independently. [LMN] Lopes Filho, M. C., Mazzucato, A. L. and Nussenzveig Lopes, H. J., Vanishing viscosity limit for incompressible flow inside a rotating circle, preprint 2006

    Supersymmetric IIB Solutions with Schr\"{o}dinger Symmetry

    Full text link
    We find a class of non-relativistic supersymmetric solutions of IIB supergravity with non-trivial B-field that have dynamical exponent n=2 and are invariant under the Schrodinger group. For a general Sasaki-Einstein internal manifold with U(1)^3 isometry, the solutions have two real supercharges. When the internal manifold is S^5, the number of supercharges can be four. We also find a large class of non-relativistic scale invariant type IIB solutions with dynamical exponents different from two. The explicit solutions and the values of the dynamical exponents are determined by vector eigenfunctions and eigenvalues of the Laplacian on an Einstein manifold.Comment: 28 pages, LaTe

    Schr\"odinger Deformations of AdS_3 x S^3

    Full text link
    We study Schr\"odinger invariant deformations of the AdS_3 x S^3 x T^4 (or K3) solution of IIB supergravity and find a large class of solutions with integer and half-integer dynamical exponents. We analyze the supersymmetries preserved by our solutions and find an infinite number of solutions with four supersymmetries. We study the solutions holographically and find that the dual D1-D5 (or F1-NS5) CFT is deformed by irrelevant operators of spin one and two.Comment: 23 page
    • …
    corecore