693 research outputs found
Simultaneous Identification of the Diffusion Coefficient and the Potential for the Schr\"odinger Operator with only one Observation
This article is devoted to prove a stability result for two independent
coefficients for a Schr\"odinger operator in an unbounded strip. The result is
obtained with only one observation on an unbounded subset of the boundary and
the data of the solution at a fixed time on the whole domain
Thermoacoustic tomography with an arbitrary elliptic operator
Thermoacoustic tomography is a term for the inverse problem of determining of
one of initial conditions of a hyperbolic equation from boundary measurements.
In the past publications both stability estimates and convergent numerical
methods for this problem were obtained only under some restrictive conditions
imposed on the principal part of the elliptic operator. In this paper
logarithmic stability estimates are obatined for an arbitrary variable
principal part of that operator. Convergence of the Quasi-Reversibility Method
to the exact solution is also established for this case. Both complete and
incomplete data collection cases are considered.Comment: 16 page
A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem
We consider a transmission wave equation in two embedded domains in ,
where the speed is in the inner domain and in the outer
domain. We prove a global Carleman inequality for this problem under the
hypothesis that the inner domain is strictly convex and . As a
consequence of this inequality, uniqueness and Lip- schitz stability are
obtained for the inverse problem of retrieving a stationary potential for the
wave equation with Dirichlet data and discontinuous principal coefficient from
a single time-dependent Neumann boundary measurement
Numerical studies of the Lagrangian approach for reconstruction of the conductivity in a waveguide
We consider an inverse problem of reconstructing the conductivity function in
a hyperbolic equation using single space-time domain noisy observations of the
solution on the backscattering boundary of the computational domain. We
formulate our inverse problem as an optimization problem and use Lagrangian
approach to minimize the corresponding Tikhonov functional. We present a
theorem of a local strong convexity of our functional and derive error
estimates between computed and regularized as well as exact solutions of this
functional, correspondingly. In numerical simulations we apply domain
decomposition finite element-finite difference method for minimization of the
Lagrangian. Our computational study shows efficiency of the proposed method in
the reconstruction of the conductivity function in three dimensions
Inversion of Randomly Corrugated Surfaces Structure from Atom Scattering Data
The Sudden Approximation is applied to invert structural data on randomly
corrugated surfaces from inert atom scattering intensities. Several expressions
relating experimental observables to surface statistical features are derived.
The results suggest that atom (and in particular He) scattering can be used
profitably to study hitherto unexplored forms of complex surface disorder.Comment: 10 pages, no figures. Related papers available at
http://neon.cchem.berkeley.edu/~dan
Multi-Channel Inverse Scattering Problem on the Line: Thresholds and Bound States
We consider the multi-channel inverse scattering problem in one-dimension in
the presence of thresholds and bound states for a potential of finite support.
Utilizing the Levin representation, we derive the general Marchenko integral
equation for N-coupled channels and show that, unlike to the case of the radial
inverse scattering problem, the information on the bound state energies and
asymptotic normalization constants can be inferred from the reflection
coefficient matrix alone. Thus, given this matrix, the Marchenko inverse
scattering procedure can provide us with a unique multi-channel potential. The
relationship to supersymmetric partner potentials as well as possible
applications are discussed. The integral equation has been implemented
numerically and applied to several schematic examples showing the
characteristic features of multi-channel systems. A possible application of the
formalism to technological problems is briefly discussed.Comment: 19 pages, 5 figure
Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: the 1d case
International audienceIn this paper we address some ill-posed problems involving the heat or the wave equation in one dimension, in particular the backward heat equation and the heat/wave equation with lateral Cauchy data. The main objective is to introduce some variational mixed formulations of quasi-reversibility which enable us to solve these ill-posed problems by using some classical La-grange finite elements. The inverse obstacle problems with initial condition and lateral Cauchy data for heat/wave equation are also considered, by using an elementary level set method combined with the quasi-reversibility method. Some numerical experiments are presented to illustrate the feasibility for our strategy in all those situations. 1. Introduction. The method of quasi-reversibility has now a quite long history since the pioneering book of Latt es and Lions in 1967 [1]. The original idea of these authors was, starting from an ill-posed problem which satisfies the uniqueness property, to introduce a perturbation of such problem involving a small positive parameter ε. This perturbation has essentially two effects. Firstly the perturbation transforms the initial ill-posed problem into a well-posed one for any ε, secondly the solution to such problem converges to the solution (if it exists) to the initial ill-posed problem when ε tends to 0. Generally, the ill-posedness in the initial problem is due to unsuitable boundary conditions. As typical examples of linear ill-posed problems one may think of the backward heat equation, that is the initial condition is replaced by a final condition, or the heat or wave equations with lateral Cauchy data, that is the usual Dirichlet or Neumann boundary condition on the boundary of the domain is replaced by a pair of Dirichlet and Neumann boundary conditions on the same subpart of the boundary, no data being prescribed on the complementary part of the boundary
Effect of Liposome Characteristics and Dose on the Pharmacokinetics of Liposomes Coated with Poly(amino acid)s
Long-circulating liposomes, such as PEG-liposomes, are frequently studied for drug delivery and diagnostic purposes. In our group, poly(amino acid) (PAA)-based coatings for long-circulating liposomes have been developed. These coatings provide liposomes with similar circulation times as compared to PEG-liposomes, but have the advantage of being enzymatically degradable. For PEG-liposomes it has been reported that circulation times are relatively independent of their physicochemical characteristics. In this study, the influence of factors such as PAA grafting density, cholesterol inclusion, surface charge, particle size, and lipid dose on the circulation kinetics of PAA-liposomes was evaluated after intravenous administration in rats. Prolonged circulation kinetics of PAA-liposomes can be maintained upon variation of liposome characteristics and the lipid dose given. However, the use of relatively high amounts of strongly charge-inducing lipids and a too large mean size is to be avoided. In conclusion, PAA-liposomes represent a versatile drug carrier system for a wide variety of applications
ITERATED QUASI-REVERSIBILITY METHOD APPLIED TO ELLIPTIC AND PARABOLIC DATA COMPLETION PROBLEMS
International audienceWe study the iterated quasi-reversibility method to regularize ill-posed elliptic and parabolic problems: data completion problems for Poisson's and heat equations. We define an abstract setting to treat both equations at once. We demonstrate the convergence of the regularized solution to the exact one, and propose a strategy to deal with noise on the data. We present numerical experiments for both problems: a two-dimensional corrosion detection problem and the one-dimensional heat equation with lateral data. In both cases, the method prove to be efficient even with highly corrupted data
- …