25,226 research outputs found
A body-bound navigation system. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration
Large angle gyro sensing system for body mount on unmanned Mars surface vehicl
Exact Nonperturbative Unitary Amplitudes for 1->N Transitions
I present an extension to arbitrary N of a previously proposed field
theoretic model, in which unitary amplitudes for processes were
obtained. The Born amplitude in this extension has the behavior
expected in a bosonic field theory. Unitarity
is violated when , or when Numerical
solutions of the coupled Schr\"odinger equations shows that for weak coupling
and a large range of N>\ncrit, the exact unitary amplitude is reasonably fit
by a factorized expression |A(1->N)| \sim (0.73 /N) \cdot \exp{(-0.025/\g2)}.
The very small size of the coefficient 1/\g2 , indicative of a very weak
exponential suppression, is not in accord with standard discussions based on
saddle point analysis, which give a coefficient The weak dependence
on could have experimental implications in theories where the exponential
suppression is weak (as in this model). Non-perturbative contributions to
few-point correlation functions in this theory would arise at order $K\ \simeq\
\left((0.05/\g2)+ 2\ ln{N}\right)/ \ ln{(1/\g2)}\g2.$Comment: 11 pages, 3 figures (not included
Particle Physics on Ice: Constraints on Neutrino Interactions Far Above the Weak Scale
Ultra-high energy cosmic rays and neutrinos probe energies far above the weak
scale. Their usefulness might appear to be limited by astrophysical
uncertainties; however, by simultaneously considering up- and down-going
events, one may disentangle particle physics from astrophysics. We show that
present data from the AMANDA experiment in the South Pole ice already imply an
upper bound on neutrino cross sections at energy scales that will likely never
be probed at man-made accelerators. The existing data also place an upper limit
on the neutrino flux valid for any neutrino cross section. In the future,
similar analyses of IceCube data will constrain neutrino properties and fluxes
at the O(10%) level.Comment: 4 pages, 1 figure, published versio
Properties of Nucleon Resonances by means of a Genetic Algorithm
We present an optimization scheme that employs a Genetic Algorithm (GA) to
determine the properties of low-lying nucleon excitations within a realistic
photo-pion production model based upon an effective Lagrangian. We show that
with this modern optimization technique it is possible to reliably assess the
parameters of the resonances and the associated error bars as well as to
identify weaknesses in the models. To illustrate the problems the optimization
process may encounter, we provide results obtained for the nucleon resonances
(1230) and (1700). The former can be easily isolated and thus
has been studied in depth, while the latter is not as well known
experimentally.Comment: 12 pages, 10 figures, 3 tables. Minor correction
Atmospheric X-ray emission experiment for shuttle
An experiment designed to measure the spatial, temporal, and energy distribution of X-ray aurorae produced by precipitating electrons, is presented. The experiment will provide vital data on solar-terrestrial relationships that may lead to defining the transfer mechanism that causes certain terrestrial weather events and climatological behavior. An instrument concept is discussed, and is based on a spatially sensitive multiwire proportional counter, combined with collimators to produce X-ray images of the aurorae. An instrument pointing system, on which the counter can be mounted, will provide the required altitude control, and can be operated by a Spacelab payload specialist for full control over its observing and data taking modes
Diffraction of wave packets in space and time
The phenomenon of wave packet diffraction in space and time is described. It
consists in a diffraction pattern whose spatial location progresses with time.
The pattern is produced by wave packet quantum scattering off an attractive or
repulsive time independent potential. An analytical formula for the pattern at
is derived both in one dimension and in three dimensions. The
condition for the pattern to exist is developed. The phenomenon is shown
numerically and analytically for the Dirac equation in one dimension also. An
experiment for the verification of the phenomenon is described and simulated
numerically.Comment: replaces quant-ph 0008077, 0008107, Journal of physics, A, in pres
Evidence of Skyrmion excitations about in n-Modulation Doped Single Quantum Wells by Inter-band Optical Transmission
We observe a dramatic reduction in the degree of spin-polarization of a
two-dimensional electron gas in a magnetic field when the Fermi energy moves
off the mid-point of the spin-gap of the lowest Landau level, . This
rapid decay of spin alignment to an unpolarized state occurs over small changes
to both higher and lower magnetic field. The degree of electron spin
polarization as a function of is measured through the magneto-absorption
spectra which distinguish the occupancy of the two electron spin states. The
data provide experimental evidence for the presence of Skyrmion excitations
where exchange energy dominates Zeeman energy in the integer quantum Hall
regime at
Reionization Revisited: Secondary CMB Anisotropies and Polarization
Secondary CMB anisotropies and polarization provide a laboratory to study
structure formation in the reionized epoch. We consider the kinetic
Sunyaev-Zel'dovich effect from mildly nonlinear large-scale structure and show
that it is a natural extension of the perturbative Vishniac effect. If the gas
traces the dark matter to overdensities of order 10, as expected from
simulations, this effect is at least comparable to the Vishniac effect at
arcminute scales. On smaller scales, it may be used to study the thermal
history-dependent clustering of the gas. Polarization is generated through
Thomson scattering of primordial quadrupole anisotropies, kinetic (second order
Doppler) quadrupole anisotropies and intrinsic scattering quadrupole
anisotropies. Small scale polarization results from the density and ionization
modulation of these sources. These effects generically produce comparable E and
B-parity polarization, but of negligible amplitude (0.001-0.01 uK) in adiabatic
CDM models. However, the primordial and kinetic quadrupoles are observationally
comparable today so that a null detection of B-polarization would set
constraints on the evolution and coherence of the velocity field. Conversely, a
detection of a cosmological B-polarization even at large angles does not
necessarily imply the presence of gravity waves or vorticity. For these
calculations, we develop an all-sky generalization of the Limber equation that
allows for an arbitrary local angular dependence of the source for both scalar
and symmetric trace-free tensor fields on the sky.Comment: 14 pages, 12 figures, minor changes and typo fixes reflect published
versio
- …