34 research outputs found

    Preface to the special issue on harnessing personal tracking data for personalization and sense-making

    Get PDF
    Increasingly, people are making use of diverse digital services that create many types of personal data. The most recent addition to such services are self-tracking devices that are capable of creating very detailed personal activity records. The focus of this special issue is to explore how such activity records can be exploited to provide user-centric personalization services

    Fyn Mediates Leptin Actions in the Thymus of Rodents

    Get PDF
    BACKGROUND:Several effects of leptin in the immune system rely on its capacity to modulate cytokine expression and apoptosis in the thymus. Surprisingly, some of these effects are dependent on signal transduction through the IRS1/PI3-kinase, but not on the activation of JAK2. Since all the well known effects of leptin in different cell types and tissues seem to be dependent on JAK2 activation, we hypothesized that, at least for the control of thymic function, another, unknown kinase could mediate the transduction of the leptin signal from the ObR towards the IRS1/PI3-kinase signaling cascade. METHODOLOGY/PRINCIPAL FINDINGS:Here, by employing immunoblot, real-time PCR and flow citometry we show that the tyrosine kinase, Fyn, is constitutively associated with the ObR in thymic cells. Following a leptin stimulus, Fyn undergoes an activating tyrosine phosphorylation and a transient association with IRS1. All these effects are independent of JAK2 activation and, upon Fyn inhibition, the signal transduction towards IRS1/PI3-kinase is abolished. In addition, the inhibition of Fyn significantly modifies the effects of leptin on thymic cytokine expression. CONCLUSION/SIGNIFICANCE:Therefore, in the thymus, Fyn acts as a tyrosine kinase that transduces the leptin signal independently of JAK2 activation, and mediates some of the immunomodulatory effects of leptin in this tissue

    Correlation of gene expression and protein production rate - a system wide study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Growth rate is a major determinant of intracellular function. However its effects can only be properly dissected with technically demanding chemostat cultivations in which it can be controlled. Recent work on <it>Saccharomyces cerevisiae </it>chemostat cultivations provided the first analysis on genome wide effects of growth rate. In this work we study the filamentous fungus <it>Trichoderma reesei </it>(<it>Hypocrea jecorina</it>) that is an industrial protein production host known for its exceptional protein secretion capability. Interestingly, it exhibits a low growth rate protein production phenotype.</p> <p>Results</p> <p>We have used transcriptomics and proteomics to study the effect of growth rate and cell density on protein production in chemostat cultivations of <it>T. reesei</it>. Use of chemostat allowed control of growth rate and exact estimation of the extracellular specific protein production rate (SPPR). We find that major biosynthetic activities are all negatively correlated with SPPR. We also find that expression of many genes of secreted proteins and secondary metabolism, as well as various lineage specific, mostly unknown genes are positively correlated with SPPR. Finally, we enumerate possible regulators and regulatory mechanisms, arising from the data, for this response.</p> <p>Conclusions</p> <p>Based on these results it appears that in low growth rate protein production energy is very efficiently used primarly for protein production. Also, we propose that flux through early glycolysis or the TCA cycle is a more fundamental determining factor than growth rate for low growth rate protein production and we propose a novel eukaryotic response to this i.e. the lineage specific response (LSR).</p

    Phylogenomics of Opsin Genes in Diptera Reveals Lineage-Specific Events and Contrasting Evolutionary Dynamics in Anopheles and Drosophila

    No full text
    Diptera is one of the biggest insect orders and displays a large diversity of visual adaptations. Similarly to other animals, the dipteran visual process is mediated by opsin genes. Although the diversity and function of these genes are well studied in key model species, a comprehensive comparative genomic study across the dipteran phylogeny is missing. Here we mined the genomes of 61 dipteran species, reconstructed the evolutionary affinities of 528 opsin genes, and determined the selective pressure acting in different species. We found that opsins underwent several lineage-specific events, including an independent expansion of Long Wave Sensitive opsins in flies and mosquitoes, and numerous family-specific duplications and losses. Both the Drosophila and the Anopheles complement are derived in comparison with the ancestral dipteran state. Molecular evolutionary studies suggest that gene turnover rate, overall mutation rate, and site-specific selective pressure are higher in Anopheles than in Drosophila. Overall, our findings indicate an extremely variable pattern of opsin evolution in dipterans, showcasing how two similarly aged radiations, Anopheles and Drosophila, are characterized by contrasting dynamics in the evolution of this gene family. These results provide a foundation for future studies on the dipteran visual system
    corecore