25,910 research outputs found

    Temperature effect on (2+1) experimental Kardar-Parisi-Zhang growth

    Full text link
    We report on the effect of substrate temperature (T) on both local structure and long-wavelength fluctuations of polycrystalline CdTe thin films deposited on Si(001). A strong T-dependent mound evolution is observed and explained in terms of the energy barrier to inter-grain diffusion at grain boundaries, as corroborated by Monte Carlo simulations. This leads to transitions from uncorrelated growth to a crossover from random-to-correlated growth and transient anomalous scaling as T increases. Due to these finite-time effects, we were not able to determine the universality class of the system through the critical exponents. Nevertheless, we demonstrate that this can be circumvented by analyzing height, roughness and maximal height distributions, which allow us to prove that CdTe grows asymptotically according to the Kardar-Parisi-Zhang (KPZ) equation in a broad range of T. More important, one finds positive (negative) velocity excess in the growth at low (high) T, indicating that it is possible to control the KPZ non-linearity by adjusting the temperature.Comment: 6 pages, 5 figure

    Qualitative analysis of a scalar-tensor theory with exponential potential

    Get PDF
    A qualitative analysis of a scalar-tensor cosmological model, with an exponential potential for the scalar field, is performed. The phase diagram for the flat case is constructed. It is shown that solutions with an initial and final inflationary behaviour appear. The conditions for which the scenario favored by supernova type Ia observations becomes an attractor in the space of the solutions are established.Comment: Latex file, 9 pages, 1 figur

    Disaster management in smart cities

    Get PDF
    The smart city concept, in which data from different systems are available, contains a multitude of critical infrastructures. This data availability opens new research opportunities in the study of the interdependency between those critical infrastructures and cascading effects solutions and focuses on the smart city as a network of critical infrastructures. This paper proposes an integrated resilience system linking interconnected critical infrastructures in a smart city to improve disaster resilience. A data-driven approach is considered, using artificial intelligence and methods to minimize cascading effects and the destruction of failing critical infrastructures and their components (at a city level). The proposed approach allows rapid recovery of infrastructures’ service performance levels after disasters while keeping the coverage of the assessment of risks, prevention, detection, response, and mitigation of consequences. The proposed approach has the originality and the practical implication of providing a decision support system that handles the infrastructures that will support the city disaster management system—make the city prepare, adapt, absorb, respond, and recover from disasters by taking advantage of the interconnections between its various critical infrastructures to increase the overall resilience capacity. The city of Lisbon (Portugal) is used as a case to show the practical application of the approach.info:eu-repo/semantics/publishedVersio

    Calcium identification and scoring based on echocardiography. An exploratory study on aortic valve stenosis

    Get PDF
    Currently, an echocardiography expert is needed to identify calcium in the aortic valve, and a cardiac CT-Scan image is needed for calcium quantification. When performing a CT-scan, the patient is subject to radiation, and therefore the number of CT-scans that can be performed should be limited, restricting the patient’s monitoring. Computer Vision (CV) has opened new opportunities for improved efficiency when extracting knowledge from an image. Applying CV techniques on echocardiography imaging may reduce the medical workload for identifying the calcium and quantifying it, helping doctors to maintain a better tracking of their patients. In our approach, a simple technique to identify and extract the calcium pixel count from echocardiography imaging, was developed by using CV. Based on anonymized real patient echocardiographic images, this approach enables semi-automatic calcium identification. As the brightness of echocardiography images (with the highest intensity corresponding to calcium) vary depending on the acquisition settings, echocardiographic adaptive image binarization has been performed. Given that blood maintains the same intensity on echocardiographic images—being always the darker region—blood areas in the image were used to create an adaptive threshold for binarization. After binarization, the region of interest (ROI) with calcium, was interactively selected by an echocardiography expert and extracted, allowing us to compute a calcium pixel count, corresponding to the spatial amount of calcium. The results obtained from these experiments are encouraging. With this technique, from echocardiographic images collected for the same patient with different acquisition settings and different brightness, obtaining a calcium pixel count, where pixel values show an absolute pixel value margin of error of 3 (on a scale from 0 to 255), achieving a Pearson Correlation of 0.92 indicating a strong correlation with the human expert assessment of calcium area for the same images.info:eu-repo/semantics/publishedVersio

    Simulation of VUV electroluminescence in micropattern gaseous detectors: the case of GEM and MHSP

    Full text link
    Electroluminescence produced during avalanche development in gaseous avalanche detectors is an useful information for triggering, calorimetry and tracking in gaseous detectors. Noble gases present high electroluminescence yields, emitting mainly in the VUV region. The photons can provide signal readout if appropriate photosensors are used. Micropattern gaseous detectors are good candidates for signal amplification in high background and/or low rate experiments due to their high electroluminescence yields and radiopurity. In this work, the VUV light responses of the Gas Electron Multiplier and of the Micro-Hole Strip Plate, working with pure xenon, are simulated and studied in detail using a new and versatile C++ toolkit. It is shown that the solid angle subtended by a photosensor placed below the microstructures depends on the operating conditions. The obtained absolute EL yields, determined for different gas pressures and as functions of the applied voltage, are compared with those determined experimentally.Comment: Accepted for publication in Journal of Instrumentatio

    Evaluating matrix elements relevant to some Lorenz violating operators

    Get PDF
    Carlson, Carone and Lebed have derived the Feynman rules for a consistent formulation of noncommutative QCD. The results they obtained were used to constrain the noncommutativity parameter in Lorentz violating noncommutative field theories. However, their constraint depended upon an estimate of the matrix element of the quark level operator (gamma.p - m) in a nucleon. In this paper we calculate the matrix element of (gamma.p - m), using a variety of confinement potential models. Our results are within an order of magnitude agreement with the estimate made by Carlson et al. The constraints placed on the noncommutativity parameter were very strong, and are still quite severe even if weakened by an order of magnitude.Comment: 4 pages, 3 figures, RevTex, minor change

    Critical region of the random bond Ising model

    Full text link
    We describe results of the cluster algorithm Special Purpose Processor simulations of the 2D Ising model with impurity bonds. Use of large lattices, with the number of spins up to 10610^6, permitted to define critical region of temperatures, where both finite size corrections and corrections to scaling are small. High accuracy data unambiguously show increase of magnetization and magnetic susceptibility effective exponents β\beta and γ\gamma, caused by impurities. The MM and χ\chi singularities became more sharp, while the specific heat singularity is smoothed. The specific heat is found to be in a good agreement with Dotsenko-Dotsenko theoretical predictions in the whole critical range of temperatures.Comment: 11 pages, 16 figures (674 KB) by request to authors: [email protected] or [email protected], LITP-94/CP-0

    Stochastic Modelling Approach to the Incubation Time of Prionic Diseases

    Full text link
    Transmissible spongiform encephalopathies like the bovine spongiform encephalopathy (BSE) and the Creutzfeldt-Jakob disease (CJD) in humans are neurodegenerative diseases for which prions are the attributed pathogenic agents. A widely accepted theory assumes that prion replication is due to a direct interaction between the pathologic (PrPsc) form and the host encoded (PrPc) conformation, in a kind of an autocatalytic process. Here we show that the overall features of the incubation time of prion diseases are readily obtained if the prion reaction is described by a simple mean-field model. An analytical expression for the incubation time distribution then follows by associating the rate constant to a stochastic variable log normally distributed. The incubation time distribution is then also shown to be log normal and fits the observed BSE data very well. The basic ideas of the theoretical model are then incorporated in a cellular automata model. The computer simulation results yield the correct BSE incubation time distribution at low densities of the host encoded protein

    Dynamics of the topological structures in inhomogeneous media

    Get PDF
    We present a general review of the dynamics of topological solitons in 1 and 2 dimensions and then discuss some recent work on the scattering of various solitonic objects (such as kinks and breathers etc) on potential obstructions.Comment: based on the talk given by W.J. Zakrzewski at QTS5. To appear in the Proceedings in a special issue of Journal of Physics
    • …
    corecore