Electroluminescence produced during avalanche development in gaseous
avalanche detectors is an useful information for triggering, calorimetry and
tracking in gaseous detectors. Noble gases present high electroluminescence
yields, emitting mainly in the VUV region. The photons can provide signal
readout if appropriate photosensors are used. Micropattern gaseous detectors
are good candidates for signal amplification in high background and/or low rate
experiments due to their high electroluminescence yields and radiopurity. In
this work, the VUV light responses of the Gas Electron Multiplier and of the
Micro-Hole Strip Plate, working with pure xenon, are simulated and studied in
detail using a new and versatile C++ toolkit. It is shown that the solid angle
subtended by a photosensor placed below the microstructures depends on the
operating conditions. The obtained absolute EL yields, determined for different
gas pressures and as functions of the applied voltage, are compared with those
determined experimentally.Comment: Accepted for publication in Journal of Instrumentatio