82 research outputs found

    Role of Brachytherapy in the Postoperative Management of Endometrial Cancer: Decision-Making Analysis among Experienced European Radiation Oncologists.

    Get PDF
    BACKGROUND There are various society-specific guidelines addressing adjuvant brachytherapy (BT) after surgery for endometrial cancer (EC). However, these recommendations are not uniform. Against this background, clinicians need to make decisions despite gaps between best scientific evidence and clinical practice. We explored factors influencing decision-making for adjuvant BT in clinical routine among experienced European radiation oncologists in the field of gynaecological radiotherapy (RT). We also investigated the dose and technique of BT. METHODS Nineteen European experts for gynaecological BT selected by the Groupe Européen de Curiethérapie and the European Society for Radiotherapy & Oncology provided their decision criteria and technique for postoperative RT in EC. The decision criteria were captured and converted into decision trees, and consensus and dissent were evaluated based on the objective consensus methodology. RESULTS The decision criteria used by the experts were tumour extension, grading, nodal status, lymphovascular invasion, and cervical stroma/vaginal invasion (yes/no). No expert recommended adjuvant BT for pT1a G1-2 EC without substantial LVSI. Eighty-four percent of experts recommended BT for pT1a G3 EC without substantial LVSI. Up to 74% of experts used adjuvant BT for pT1b LVSI-negative and pT2 G1-2 LVSI-negative disease. For 74-84% of experts, EBRT + BT was the treatment of choice for nodal-positive pT2 disease and for pT3 EC with cervical/vaginal invasion. For all other tumour stages, there was no clear consensus for adjuvant treatment. Four experts already used molecular markers for decision-making. Sixty-five percent of experts recommended fractionation regimens of 3 × 7 Gy or 4 × 5 Gy for BT as monotherapy and 2 × 5 Gy for combination with EBRT. The most commonly used applicator for BT was a vaginal cylinder; 82% recommended image-guided BT. CONCLUSIONS There was a clear trend towards adjuvant BT for stage IA G3, stage IB, and stage II G1-2 LVSI-negative EC. Likewise, there was a non-uniform pattern for BT dose prescription but a clear trend towards 3D image-based BT. Finally, molecular characteristics were already used in daily decision-making by some experts under the pretext that upcoming trials will bring more clarity to this topic

    Polyester synthesis in transplastomic tobacco (Nicotiana tabacum L.): significant contents of polyhydroxybutyrate are associated with growth reduction

    Get PDF
    Abstract The pathway for synthesis of polyhydroxybutyrate (PHB), a polyester produced by three bacterial enzymes, was transferred to the tobacco plastid genome by the biolistic transformation method. The polycistronic phb operon encoding this biosynthetic pathway was cloned into plastome transformation vectors. Following selection and regeneration, the content and structure of plant-produced hydroxybutyrate was analysed by gas chromatography. Significant PHB synthesis was limited to the early stages of in vitro culture. Within the transformants, PHB synthesis levels were highly variable. In the early regeneration stage, single regenerates reached up to 1.7% PHB in dry weight. At least 70% of plantproduced hydroxybutyric acid was proven to be polymer with a molecular mass of up to 2,500 kDa. PHB synthesis levels of the transplastomic lines were decreasing when grown autotrophically but their phb transcription levels remained stable. Transcription of the three genes is divided into two transcripts with phbB being transcribed separately from phbC and phbA. In mature plants even low amounts of PHB were associated with male sterility. Fertility was only observed in a mutant carrying a defective phb operon. These results prove successful expression of the entire PHB pathway in plastids, concomitant, however, with growth deficiency and male sterility

    The novel gene Ny-1 on potato chromosome IX confers hypersensitive resistance to Potato virus Y and is an alternative to Ry genes in potato breeding for PVY resistance

    Get PDF
    Hypersensitive resistance (HR) is an efficient defense strategy in plants that restricts pathogen growth and can be activated during host as well as non-host interactions. HR involves programmed cell death and manifests itself in tissue collapse at the site of pathogen attack. A novel hypersensitivity gene, Ny-1, for resistance to Potato virus Y (PVY) was revealed in potato cultivar Rywal. This is the first gene that confers HR in potato plants both to common and necrotic strains of PVY. The locus Ny-1 mapped on the short arm of potato chromosome IX, where various resistance genes are clustered in Solanaceous genomes. Expression of HR was temperature-dependent in cv. Rywal. Strains PVYO and PVYN, including subgroups PVYNW and PVYNTN, were effectively localized when plants were grown at 20°C. At 28°C, plants were systemically infected but no symptoms were observed. In field trials, PVY was restricted to the inoculated leaves and PVY-free tubers were produced. Therefore, the gene Ny-1 can be useful for potato breeding as an alternative donor of PVY resistance, because it is efficacious in practice-like resistance conferred by Ry genes

    120215.qxd

    No full text
    Abstract Protoplasts from potato cultivars used as recipient parents were fused with irradiated protoplasts from wild Solanum donor species. Regenerated plants were analysed by RAPDs to identify hybrids. Irradiation of donor protoplasts with ionizing irradiation induced a broad range of donor nuclear DNA elimination in the asymmetric hybrids. Usage of chloroplast (cp)-and mitochondrial (mt)-specific PCR markers made it possible to trace the different origins of the cp genome in seven fusion combinations, as well as the mt genomes in two fusion combinations. Regenerated plants with recipient nucleus and plastome markers from the donors were found in six of the seven analysed fusion combinations. Protoplast fusion has generated novel mt genome combinations consisting of different portions of the mt genomes from the fusion partners. Selection of heterofusion products based on fluorescence markers is an efficient method to obtain asymmetric Solanum hybrids and cybrids from most fusion combinations. Possible models for cybrid formation are discussed
    corecore