346 research outputs found

    Two-photon gateway and real-time feedback control of a single atom in a cavity

    Get PDF

    Extended Method of Digital Modulation Recognition and Its Testing

    Get PDF
    The paper describes a new method for the classification of digital modulations. ASK, 2FSK, 4FSK, MSK, BPSK, QPSK, 8PSK and 16QAM were chosen for recognition as best known digital modulations used in modern communication technologies. The maximum value of the spectral power density of the normalized-centered instantaneous amplitude of the received signal is used to discriminate between frequency modulations (2FSK, 4FSK and MSK) on one hand and amplitude and phase modulations (ASK, BPSK, QPSK, 8PSK and 16QAM) on the other hand. Then the 2FSK, 4FSK and MSK modulations are classified by means of spectrums. The histograms of the instantaneous phase are used to discriminate between ASK, BPSK, QPSK, 8PSK and 16QAM. The method designed was tested with simulated and measured signals corrupted by white Gaussian noise

    Trapping and observing single atoms in the dark

    Get PDF
    A single atom strongly coupled to a cavity mode is stored by three-dimensional confinement in blue-detuned cavity modes of different longitudinal and transverse order. The vanishing light intensity at the trap center reduces the light shift of all atomic energy levels. This is exploited to detect a single atom by means of a dispersive measurement with 95% confidence in 0.010 ms, limited by the photon-detection efficiency. As the atom switches resonant cavity transmission into cavity reflection, the atom can be detected while scattering about one photon

    Quantum interference of single photons from remote nitrogen-vacancy centers in diamond

    Get PDF
    We demonstrate quantum interference between indistinguishable photons emitted by two nitrogen-vacancy (NV) centers in distinct diamond samples separated by two meters. Macroscopic solid immersion lenses are used to enhance photon collection efficiency. Quantum interference is verified by measuring a value of the second-order cross-correlation function g(2)(0)=0.35±0.04<0.5g^{(2)}(0) = 0.35 \pm 0.04<0.5. In addition, optical transition frequencies of two separated NV centers are tuned into resonance with each other by applying external electric fields. Extension of the present approach to generate entanglement of remote solid-state qubits is discussed.Comment: 5 pages, 3 figure

    Nanodiamonds carrying quantum emitters with almost lifetime-limited linewidths

    Get PDF
    Nanodiamonds (NDs) hosting optically active defects are an important technical material for applications in quantum sensing, biological imaging, and quantum optics. The negatively charged silicon vacancy (SiV) defect is known to fluoresce in molecular sized NDs (1 to 6 nm) and its spectral properties depend on the quality of the surrounding host lattice. This defect is therefore a good probe to investigate the material properties of small NDs. Here we report unprecedented narrow optical transitions for SiV colour centers hosted in nanodiamonds produced using a novel high-pressure high-temperature (HPHT) technique. The SiV zero-phonon lines were measured to have an inhomogeneous distribution of 1.05 nm at 5 K across a sample of numerous NDs. Individual spectral lines as narrow as 354 MHz were measured for SiV centres in nanodiamonds smaller than 200 nm, which is four times narrower than the best SiV line previously reported for nanodiamonds. Correcting for apparent spectral diffusion yielded a homogeneous linewith of about 200 MHz, which is close to the width limit imposed by the radiative lifetime. These results demonstrate that the direct HPHT synthesis technique is capable of producing nanodiamonds with high crystal lattice quality, which are therefore a valuable technical material

    Observation of squeezed light from one atom excited with two photons

    Full text link
    Single quantum emitters like atoms are well-known as non-classical light sources which can produce photons one by one at given times, with reduced intensity noise. However, the light field emitted by a single atom can exhibit much richer dynamics. A prominent example is the predicted ability for a single atom to produce quadrature-squeezed light, with sub-shot-noise amplitude or phase fluctuations. It has long been foreseen, though, that such squeezing would be "at least an order of magnitude more difficult" to observe than the emission of single photons. Squeezed beams have been generated using macroscopic and mesoscopic media down to a few tens of atoms, but despite experimental efforts, single-atom squeezing has so far escaped observation. Here we generate squeezed light with a single atom in a high-finesse optical resonator. The strong coupling of the atom to the cavity field induces a genuine quantum mechanical nonlinearity, several orders of magnitude larger than for usual macroscopic media. This produces observable quadrature squeezing with an excitation beam containing on average only two photons per system lifetime. In sharp contrast to the emission of single photons, the squeezed light stems from the quantum coherence of photon pairs emitted from the system. The ability of a single atom to induce strong coherent interactions between propagating photons opens up new perspectives for photonic quantum logic with single emittersComment: Main paper (4 pages, 3 figures) + Supplementary information (5 pages, 2 figures). Revised versio

    Observation of Fourier transform limited lines in hexagonal boron nitride

    Full text link
    © 2018 American Physical Society. Single defect centers in layered hexagonal boron nitride are promising candidates as single-photon sources for quantum optics and nanophotonics applications. However, spectral instability hinders many applications. Here, we perform resonant excitation measurements and observe Fourier transform limited linewidths down to ≈50 MHz. We investigated the optical properties of more than 600 single-photon emitters (SPEs) in hBN. The SPEs exhibit narrow zero-phonon lines distributed over a spectral range from 580 to 800 nm and with dipolelike emission with a high polarization contrast. Finally, the emitters withstand transfer to a foreign photonic platform, namely, a silver mirror, which makes them compatible with photonic devices such as optical resonators and paves the way to quantum photonics applications
    corecore