860 research outputs found
Astrophysical thermonuclear functions
As theoretical knowledge and experimental verification of nuclear cross
sections increases it becomes possible to refine analytic representations for
nuclear reaction rates. In this paper mathematical/statistical techniques for
deriving closed-form representations of thermonuclear functions are summarized
and numerical results for them are given.The purpose of the paper is also to
compare numerical results for approximate and closed-form representations of
thermonuclear functions.Comment: 17 pages in LaTeX, 8 figures available on request from
[email protected]
Boltzmann equations for mixtures of Maxwell gases: exact solutions and power like tails
We consider the Boltzmann equations for mixtures ofMaxwell gases. It is shown
that in certain limiting case the equations admit self-similar solutions that
can be constructed in explicit form. More precisely, the solutions have simple
explicit integral representations. The most interesting solutions have finite
energy and power like tails. This shows that power like tails can appear not
just for granular particles (Maxwell models are far from reality in this case),
but also in the system of particles interacting in accordance with laws of
classical mechanics. In addition, non-existence of positive self-similar
solutions with finite moments of any order is proven for a wide class of
Maxwell models.Comment: 20 page
Obesity-induced insulin resistance in human skeletal muscle is characterised by defective activation of p42/p44 MAP kinase
Insulin resistance (IR), an impaired cellular, tissue and whole body response to insulin, is a major pathophysiological defect of type 2 diabetes mellitus. Although IR is closely associated with obesity, the identity of the molecular defect(s) underlying obesity-induced IR in skeletal muscle remains controversial; reduced post-receptor signalling of the insulin receptor substrate 1 (IRS1) adaptor protein and downstream effectors such as protein kinase B (PKB) have previously been implicated. We examined expression and/or activation of a number of components of the insulin-signalling cascade in skeletal muscle of 22 healthy young men (with body mass index (BMI) range, 20–37 kg/m2). Whole body insulin sensitivity (M value) and body composition was determined by the hyperinsulinaemic (40 mU. min−1.m−2.), euglycaemic clamp and by dual energy X-ray absorptiometry (DEXA) respectively. Skeletal muscle (vastus lateralis) biopsies were taken before and after one hour of hyperinsulinaemia and the muscle insulin signalling proteins examined by western blot and immunoprecipitation assay. There was a strong inverse relationship between M-value and BMI. The most striking abnormality was significantly reduced insulin-induced activation of p42/44 MAP kinase, measured by specific assay, in the volunteers with poor insulin sensitivity. However, there was no relationship between individuals' BMI or M-value and protein expression/phosphorylation of IRS1, PKB, or p42/44 MAP kinase protein, under basal or hyperinsulinaemic conditions. In the few individuals with poor insulin sensitivity but preserved p42/44 MAP kinase activation, other signalling defects were evident. These findings implicate defective p42/44 MAP kinase signalling as a potential contributor to obesity-related IR in a non-diabetic population, although clearly multiple signalling defects underlie obesity associated IR
Dedicated versus mainstreaming approaches in local climate plans in Europe
Cities are gaining prominence committing to respond to the threat of climate change, e.g., by developing local climate plans or strategies. However, little is known regarding the approaches and processes of plan development and implementation, or the success and effectiveness of proposed measures. Mainstreaming is regarded as one approach associated with (implementation) success, but the extent of integration of local climate policies and plans in ongoing sectoral and/or development planning is unclear. This paper analyses 885 cities across the 28 European countries to create a first reference baseline on the degree of climate mainstreaming in local climate plans. This will help to compare the benefits of mainstreaming versus dedicated climate plans, looking at policy effectiveness and ultimately delivery of much needed climate change efforts at the city level. All core cities of the European Urban Audit sample were analyzed, and their local climate plans classified as dedicated or mainstreamed in other local policy initiatives. It was found that the degree of mainstreaming is low for mitigation (9% of reviewed cities; 12% of the identified plans) and somewhat higher for adaptation (10% of cities; 29% of plans). In particular horizontal mainstreaming is a major effort for local authorities; an effort that does not necessarily pay off in terms of success of action implementation. This study concludes that climate change issues in local municipalities are best tackled by either, developing a dedicated local climate plan in parallel to a mainstreamed plan or by subsequently developing first the dedicated and later a mainstreaming plan (joint or subsequent “dual track approach”). Cities that currently provide dedicated local climate plans (66% of cities for mitigation; 26% of cities for adaptation) may follow-up with a mainstreaming approach. This promises effective implementation of tangible climate actions as well as subsequent diffusion of climate issues into other local sector policies. The development of only broad sustainability or resilience strategies is seen as critical.We thank the many council representatives that supported the datacollection. Special thanks to Birgit Georgi who helped in setting up this large net work of researchers across the EU-28. We also thank the EU COST Action TU 0902 (ledbyRichardDawson) that established the core research network and the positive engagement and interaction of th emembers of this group. OH is Fellow of the Tyndall Centre for Climate Change Research and was funded by the UK EPSRC LC Transforms: Low Carbon Transitions of Fleet Operations in Metropolitan Sites Project (grant number EP/N010612/1). EKL was supported by the Ministry of Education, Youth and Sports, Czechia, within the National Sustainability Program I (NPU I) (grant number LO1415). DG ac-knowledges support by the Ministry of Education, University and Research (MIUR), Italy ("Departments of Excellence" grant L. 232/2016). HO was supported by the Ministry of Education and Research, Estonia (grantnumberIUT34-17). MO acknowledges funding from the Ministry of Economy and Competitiveness (MINECO), Spain (grant number IJCI-2016-28835). SS acknowledges that CENSE's research is partially funded by the Science Foundation, Portugal (grant number UID/AMB/04085/2019). The paper reflects only the views of the authors. The European Union, the European Environment Agency or other supporting bodies are not liable for any use that may be made of the information that is provided in this manuscript
Combined prompt gamma activation and neutron diffraction analyses of historic metal objects and limestone samples
Two non-destructive neutron techniques have been used for the analysis of archaeological objects, among them English monumental brass plates, Dutch tin-lead spoons, a Roman leaded bronze fibula and several limestone samples. Prompt Gamma Activation Analysis (PGAA) is a non-destructive method for determination of the major and trace element compositions of various archaeological materials.
Time-Of-Flight Neutron Diffraction (TOF-ND), on the other hand, is a non-invasive diagnostic tool for obtaining structural information from ceramic and metal objects. The element information (PGAA) holds the key information for
addressing questions of provenance and authentication, whereas the structure information (TOF-ND) addresses questions of ancient materials and making techniques. Here we present data from those two complementary neutron methods, applied to different types of materials and artefacts, in order to highlight commonalities and
differences
Exact steady state solution of the Boltzmann equation: A driven 1-D inelastic Maxwell gas
The exact nonequilibrium steady state solution of the nonlinear Boltzmann
equation for a driven inelastic Maxwell model was obtained by Ben-Naim and
Krapivsky [Phys. Rev. E 61, R5 (2000)] in the form of an infinite product for
the Fourier transform of the distribution function . In this paper we
have inverted the Fourier transform to express in the form of an
infinite series of exponentially decaying terms. The dominant high energy tail
is exponential, , where and the amplitude is given in terms of a converging
sum. This is explicitly shown in the totally inelastic limit ()
and in the quasi-elastic limit (). In the latter case, the
distribution is dominated by a Maxwellian for a very wide range of velocities,
but a crossover from a Maxwellian to an exponential high energy tail exists for
velocities around a crossover velocity , where .
In this crossover region the distribution function is extremely small, .Comment: 11 pages, 4 figures; a table and a few references added; to be
published in PR
Three weeks of interrupting sitting lowers fasting glucose and glycemic variability, but not glucose tolerance, in free-living women and men with obesity
Funding This work was supported by grants from the Novo Nordisk Foundation (NNF14OC0011493, NNF14OC0009941, NNF18CC0034900), Swedish Diabetes Foundation (DIA2018-357), Diabetes Wellness Sverige (1849-PG), Swedish Research Council (2015-00165, 2018-02389), the Strategic Research Programme in Diabetes at Karolinska Institutet (2009-1068), the Knut and Alice Wallenberg Foundation (2018-0094), and the Stockholm County Council (SLL20170159). D.D. is supported by the National Health and Medical Research Council and the Victorian Government’s OIS scheme. Acknowledgements We thank the Swedish Metabolomics Centre (Umeå University) for assisting with the lipidomic analysis and Mariam Nordstrand for efforts in the recruitment and screening of participants, and in muscle biopsy procedure. The current addresses for S.P. and B.M.G. are the School of Life Sciences, University of Nottingham, Nottingham, UK, and The Rowett Institute, University of Aberdeen, Aberdeen, UK, respectively.Peer reviewedPostprin
A massive urban symbiosis:A preliminary review of the Urban Mining Pilot Bases Programme in China
Waste recycling helps to establish a circular loop of resource flow between production and consumption, achieving a certain symbiosis between the industrial and urban sector. Since more and more resources are accumulated in the urban sector, urban mining as form of waste recycling in a massive way becomes an outstanding way to achieve industrial and urban symbiosis. In 2010 China initiated a national urban mining pilot base (UMPB) programme with the objective of developing the recycling industry and relieving environmental and resource constrains. This study aims to provide policy review of the programme. We find that the UMPB programme was developed from past circular economy policies and attains legacy assurance from current laws and national plans. But this did not formulate a perfect governance context for its implementation. A multi-ministerial cross-management network led to policy conflicts, and recycling-oriented legislation remained absent. These became the main barriers for the good implementation of those urban mining pilots. Comparing with the eco-town programme in Japan, it shows that both programmes share some similarities of partial policy objectives but also show variety in the scope of urban symbiosis due to the different problems they focus on and the slightly different policy objectives under the different economic and social development phases
Enhancement of fusion rates due to quantum effects in the particles momentum distribution in nonideal media
This study concerns a situation when measurements of the nonresonant
cross-section of nuclear reactions appear highly dependent on the environment
in which the particles interact. An appealing example discussed in the paper is
the interaction of a deuteron beam with a target of deuterated metal Ta. In
these experiments, the reaction cross section for d(d,p)t was shown to be
orders of magnitude greater than what the conventional model predicts for the
low-energy particles. In this paper we take into account the influence of
quantum effects due to the Heisenberg uncertainty principle for particles in a
non-ideal medium elastically interacting with the medium particles. In order to
calculate the nuclear reaction rate in the non-ideal environment we apply both
the Monte Carlo technique and approximate analytical calculation of the Feynman
diagram using nonrelativistic kinetic Green's functions in the medium which
correspond to the generalized energy and momentum distribution functions of
interacting particles. We show a possibility to reduce the 12-fold integral
corresponding to this diagram to a fivefold integral. This can significantly
speed up the computation and control accuracy. Our calculations show that
quantum effects significantly influence reaction rates such as p +7Be, 3He
+4He, p +7Li, and 12C +12C. The new reaction rates may be much higher than the
classical ones for the interior of the Sun and supernova stars. The possibility
to observe the theoretical predictions under laboratory conditions is
discussed
- …